首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ball milling and mixing with strong shear force and strike force were applied to get fine dispersion of nano‐SiOx particles in poly(phenylene sulfide) (PPS) powder. Nano‐SiOx/PPS composites were manufactured by intensive compounding with 3 wt% nano‐SiOx particles. Effects of the ball milling dispersion on crystal behavior and impact strength of nano‐SiOx/PPS nanocomposites were studied. Physical mechanisms of ball milling dispersion were investigated. Evaluations based on both WAXD and DSC indicates that crystallization behavior of nano‐SiOx/heat‐treated PPS (HT‐PPS) nanocomposites was influenced by the ball milling process. Their crystallinity was 25% less while Izod impact strength was 89% better than those of as‐received neat PPS. Increased kinetic energy via ball milling by external work makes nano‐SiOx able to overcome the attraction from itself to prevent agglomeration. Interfacial bonding of two phases between nano‐SiOx and PPS was enhanced by crosslinking in HT‐PPS and reduction in surface tension of interface during ball milling. The bonds allow SiOx to dissipate energy and thus improve PPS impact strength from the addition of nano‐SiOx. POLYM. ENG. SCI., 46:820–825, 2006. © 2006 Society of Plastics Engineers  相似文献   

2.
Summary: Biobased neat epoxy materials containing epoxidized linseed oil (ELO) were processed with an amine curing agent. A defined amount of diglycidyl ether of bisphenol F (DGEBF) was replaced by ELO. The thermophysical properties of the amine‐cured biobased neat epoxy were measured by dynamic mechanical analysis (DMA). The Izod impact strength increased with an increase in the amount of ELO added. The change in the Izod impact strength was correlated with the thermophysical properties measured by DMA.

Relation between the Izod impact strength and loss factor for amine‐ and anhydride‐cured ELO‐containing epoxy resins.  相似文献   


3.
Summary: Nano‐polyethylene fibers and floccules were prepared under atmospheric pressure via ethylene extrusion polymerization in suit, using the SBA‐15‐supported Cp2ZrCl2 catalytic system. The major morphology units in the samples were fibers and floccules. The diameter of the single nano‐fibers was 120–200 nm. The single nano‐fibers could aggregate to form fiber aggregates and bundles. The number of PE floccules increased with extension of polymerization time, while the melting point of PE with nano‐fibers was little higher than that of common polyethylene.

SEM micrograph of the nano‐polyethylene fibers produced at a polymerization time of 60 min: micro‐fibers and floccule surface morphologies.  相似文献   


4.
Summary: Polystyrene (PS) was toughened with ethylene‐propylene‐diene terpolymer (EPDM) in the presence of styrene‐butadiene‐styrene block copolymer (SBS). Incorporation of SBS into the PS/EPDM blends clearly improved the impact properties. For PS/EPDM/SBS (mass ratio: 69/21/10) blends, the notched Charpy impact strength reached a maximum value of 26.3 kJ/m2. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that SBS was distributed on the interface between PS and EPDM. Butanone extraction and FTIR analysis found that there was a grafting reaction between PS and EPDM phase during melt compounding. Shearing and processing rheological behaviors of blends were evaluated with a Haake capillary rheometer and a torque rheometer, respectively.

  相似文献   


5.
Summary: The effects of interfacial interaction between nano‐CaCO3 and PVC on mechanical properties and morphology of PVC/nano‐CaCO3 composites were studied. Nano‐CaCO3 was treated with vibromilling in the presence of PVC and coupling agents. The mechanical properties of PVC/treated nano‐CaCO3 are remarkably improved. Transmission electron microscopy results revealed that vibromilled nano‐CaCO3 particles are well dispersed in PVC matrix with good homogeneity and well adhered to PVC matrix. Molau test indicated that chemical reaction between newly formed surface of nano‐CaCO3 and PVC or coupling agent took place. Theoretical calculation results show that the interfacial interaction between PVC and nano‐CaCO3 are substantially improved through vibromilling treatment of nano‐CaCO3 in the presence of PVC and coupling agent.

Molau test results of the samples in THF.  相似文献   


6.
The effect of the chemical modification of the silica surface by the silane coupling agent (Si69) on both the real and the imaginary parts of the shear compliance (J′, J″) on silica‐filled butyl rubber vulcanizates was investigated in a wide temperature and frequency range, ?70 to 120 °C and 10?4 to 10 Hz, respectively. In addition, the stress‐strain measurements, DSC, and TEM were carried out. Moreover the effect of stress‐strain cyclic deformation up to ten times with maximum deformation 80% of the elongation at break on J′, J″ is also studied. It was found that the filler network recovers after cyclic stress‐strain in a time scale of one year at room temperature.

Transmission electron photographs of the butyl rubber [IIR] vulcanizates: (a) IIR, unfilled, (b) IIR, filled with 20 phr SiO2, (c) IIR,filled with 20 phr SiO2 + 1.6 phr Si69.  相似文献   


7.
Toughness enhancement of S‐(S/B)‐S triblock copolymers via a molecular‐weight‐controlled pathway is demonstrated. The post‐yield crack toughness behavior of the triblock copolymers uniquely reveal a brittle‐to‐semiductile‐to‐ductile transition with increasing while keeping the basic molecular architecture fixed. TEM and SAXS investigations indicated three distinct morphologies as a function of χeffN as a consequence of the increase in : (i) a homogeneous structure without phase‐separation, (ii) a weakly segregated structure, and (iii) a lamellar structure. The increase in crack toughness is also reaffirmed from kinetic and strain field analysis studies concerning dynamics of crack growth in block copolymers with high PS content.

  相似文献   


8.
In the present work, we report on the synthesis and characterization of poly(vinylidene fluoride) (PVDF) with N‐isopropylacrylamide (NIPAAM) polymer side chains from molecular graft copolymerization in solution. The copolymer can be readily cast into temperature‐sensitive microfiltration (MF) membranes by the phase inversion technique. The copolymer approach to membrane fabrication allows a much better control of the physicochemical nature of the membrane pores through the variation in graft concentration, membrane casting temperature and concentration of the membrane casting solution.

  相似文献   


9.
Two series of hydrogels of poly[(acrylic acid)‐co‐(itaconic acid)] have been prepared by copolymerization in solution using tetrafunctional N,N′‐methylenebisacrylamide (NMBA) as cross‐linker. The resulting polymer was swollen in water at 298 K to yield homogenous transparent hydrogels. These hydrogels were characterized in terms of swelling and compression‐strain measurements. The influence of the comonomer composition and concentration of cross‐linking agent on volumetric swelling and the mechanical properties of these hydrogels were investigated. Inefficient cross‐linking is indicated by the small values of νe relative to the theoretical cross‐linking densities.

Dependence of measured affective cross‐linking density (νe) on the theoretical cross‐linking density (νt) for acrylic acid/itaconic acid hydrogels prepared at a fixed composition of AA80/AI20 wt.‐%, but at different concentrations of NMBA.  相似文献   


10.
To enhance adhesion properties of PEO on wood fibers, block polymers of PEO and 2‐(dimethylamino)ethyl methacrylate were synthesized. The polymers were further modified to obtain strongly cationic species. The resulting polymers were used as additives in paper sheets. Papers were studied by DMA in a controlled‐humidity chamber. Addition of the PEO block co‐polymers enhanced paper strength. The strength of the paper sheets was highest when polymer with molecular weight of 400 kg · mol?1 was used as an additive. Highly cationic block co‐polymers increased moduli of paper sheets more than their weakly cationic analogs, which indicated strong interaction with fiber surfaces. Strength of the paper sheets decreased both with increased temperature and humidity.

  相似文献   


11.
Long‐aliphatic‐segment polyamides were prepared based on hexamethylenediamine and α,ω‐(CH2)x biosynthetic diacids (x = 10, 11, 12). The pertinent monomers (salts) were isolated as solids, thoroughly characterized for the first time, and then submitted to an anhydrous melt prepolymerization technique. The obtained prepolymers exhibited in the range of 5 100–11 800 g · mol?1, and the molecular weight was further increased by up to 55% through solid‐state finishing. The suggested overall polyamidation cycle was conducted at short melt‐reaction times, so as to avoid any thermal degradation, and was proved efficient, indicating similar reactants polymerizability independently of the methylene content.

  相似文献   


12.
Summary: For the reference system of PPS‐based nanocomposites, we investigated the intercalation behavior of DFS molecules into nano galleries based on OMLFs consisting of different types of intercalants and nanofillers with different surface charge densities. The smaller initial interlayer opening led to the larger interlayer expansion, regardless of the miscibility between the intercalant and DFS. We examined the preparation of PPS‐based nanocomposites with and/or without shear processing at 300 °C. The finer dispersion of OMLFs in the nanocomposite was observed when using OMLF having small initial interlayer opening. The delamination of the stacked nanofillers was governed by the initial interlayer opening, whereas the uniform dispersion of the nanofillers was affected by the shear.

Plot of initial interlayer opening versus Δ opening for various OMLFs intercalated with DFS.  相似文献   


13.
Summary: Soluble multi‐walled carbon nanotubes (s‐MWNTs), obtained via amidation reaction of octadecylamine with purified multi‐walled carbon nanotubes (p‐MWNTs), were solution‐mixed with P(MMA‐co‐EMA) at various loadings. Compared to the p‐MWNTs/P(MMA‐co‐EMA) composites, the s‐MWNTs/P(MMA‐co‐EMA) composites showed great improvement both in Young's modulus and tensile strength. With the addition of 10 wt.‐% s‐MWNTs, the Young's modulus and tensile strength of s‐MWNTs/P(MMA‐co‐EMA) composite have 135% and 49% increase over the pure P(MMA‐co‐EMA), respectively, and a 9.2% increase in Young's modulus and 12.8% increase in tensile strength over that of 10 wt.‐% p‐MWNTs composite. With the increase of MWNTs content, the Tg increases from 89 to 106 °C. SEM studies show that the s‐MWNTs are well dispersed in the polymer matrix. Good dispersion of s‐MWNTs in polymer matrix and great interfacial bonding between s‐MWNTs and P(MMA‐co‐EMA) may be the key reason for the improvement of the mechanical properties.

Stress‐strain curves of the MWNTs and P(MMA‐co‐EMA) composites.  相似文献   


14.
Summary: Poly(ε‐caprolactone)‐polyglycolide‐poly(ethylene glycol) monomethyl ether random copolymers were synthesized from ε‐caprolactone (ε‐CL), glycolide (GA) and poly(ethylene glycol) monomethyl ether (MPEG) using stannous octoate as catalyst at 160 °C by bulk polymerization. The copolymers with different composition were synthesized by adjusting the weight ration of reaction mixture. The resultant copolymer with a weight ratio (10:15:75) of MPEG2000, GA, and CL was characterized by IR, 1H NMR, GPC and DSC. The new biodegradable copolymer has potential for medical applications since it is combined with properties of PCL, PGA and MPEG.

  相似文献   


15.
Summary: An organic‐inorganic hybrid material consisting of a 3‐(methacryloxy)propyl functionalized SiO2/MgO framework was synthesized. This hybrid was successfully reacted with styrene, butyl acrylate and butyl methacrylate via a free radical emulsion polymerization to form polymer composites. The polymer composites were investigated by means of FT‐IR spectroscopy, TGA, DSC and rheometry. It is shown that the polymer is linked covalently to the organic/inorganic hybrid. Although the polymer content is rather low, the composites exhibit a polymer‐like character and enhanced mechanical properties compared to the corresponding homopolymers.

  相似文献   


16.
Summary: The preparation of poly(ε‐caprolactone)‐g‐TiNbO5 nanocomposites via in situ intercalative polymerization of ε‐caprolactone initiated by an aluminium complex is described. These nanocomposites were obtained in the presence of HTiNbO5 mineral pre‐treated by AlMe3, but non‐modified by tetraalkylammonium cations. These hybrid materials obtained have been characterized by Fourier transform infrared absorption spectroscopy, wide‐angle X‐ray scattering, scanning electron microscopy, and dynamic mechanical analysis. Layered structure delamination and homogeneous distribution of mineral lamellae in the poly(ε‐caprolactone) (PCL) is figured out and strong improvement of the mechanical properties achieved. The storage modulus of the nanocomposites is enhanced as compared to pure PCL and increases monotonously with the amount of the filler in the range 3 to 10 wt.‐%.

SEM image of the fractured surface of a PCL‐TiNbO5 nanocomposite film.  相似文献   


17.
Summary: A novel hyperbranched poly(β‐ketoester) was synthesized from 2‐(acetoacetoxy)ethyl acrylate by the Michael addition in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as catalyst. 1H NMR integration experiments revealed that the degree of branching in the poly(β‐ketoester) was remarkably high at a level of 82.9%. The number‐average molecular weight of the polymer was between 2 100 and 12 000 and increased with reaction temperature and conversion.

Synthesis of hyperbranched polymer by Michael addition of AAEA.  相似文献   


18.
Summary: Using sulfonium groups to create a novel fiber material, methionine‐containing hybrid fibers were prepared from S‐methylated poly(L ‐methionine) and poly(L ‐lysine, L ‐methionine) solutions with gellan solution by polyion complex (PIC) formation via self‐assembly at the aqueous interface. The breaking strain of the PIC fibers were increased by incorporation of methionine residues into the poly(L ‐lysine). These findings may provide a new approach for preparing a wool‐like fiber in aqueous media using the synthetic water‐soluble methionine‐containing poly(amino acid)s.

SEM image of Met‐containing PIC fiber: (a) poly[Met19Met(SMe)81]‐gellan fiber (magnification, ×500).  相似文献   


19.
Summary: A series of NBC/phenolic resin composites, containing 0, 1, 3, 5 or 7 wt.‐% of a powdered phenolic resin of different particle diameter, was prepared by the reaction injection molding (RIM) process. It was determined by SEM analysis that there exists a strong interaction between particles and matrix and that such interaction occurs through hydrogen‐type bonds as determined by FTIR analysis. According to the results it is thought that the glass transition temperature of the NBC/phenolic resin composites depends on two competing factors: the rigidity promoted by the hard solid filler and the flexibility imparted by the nylon 6 amorphous phase, whose proportion becomes more important with increasing amounts of phenolic resin particles. The elastic and flexural moduli of the NBC were improved by the addition of phenolic resin confirming the reinforcing effect of this filler. On the contrary, the impact strength diminishes with increasing amounts of phenolic resin, although this property is strongly dependent on the particle diameter.

SEM micrograph of the nylon 6‐polyesteramide block copolymer (80/20).  相似文献   


20.
Summary: To obtain a balance between toughness (as measured by notched impact strength) and elastic stiffness of poly(butylene terephthalate) (PBT), a small amount of tetra‐functional epoxy monomer was incorporated into PBT/[ethylene/methyl acrylate/glycidyl methacrylate terpolymer (E‐MA‐GMA)] blends during the reactive extrusion process. The effectiveness of toughening by E‐MA‐GMA and the effect of the epoxy monomer were investigated. It was found that E‐MA‐GMA was finely dispersed in PBT matrix, whose toughness was significantly enhanced, but the stiffness decreased linearly, with increasing E‐MA‐GMA content. Addition of 0.2 phr epoxy monomer was noted to further improve the dispersion of E‐MA‐GMA particles by increasing the viscosity of the PBT matrix. While use of epoxy monomer had little influence on the notched impact strength of the blends, there was a distinct increase in the elastic stiffness. SEM micrographs of impact‐fracture surfaces indicated that extensive matrix shear yielding was the main impact energy dissipation mechanism in both types of blends, with or without epoxy monomer, and containing 20 wt.‐% or more elastomer.

SEM micrographs of freeze‐fractured surfaces of PBT/E‐MA‐GMA blend illustrating the finer dispersion of E‐MA‐GMA in the presence of epoxy monomer.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号