首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用Gleeble-3500热模拟试验机进行等温恒应变速率热压缩实验,研究了TC4钛合金在温度800~950℃、应变速率0.001~10s-1条件下的流动软化行为。研究发现随变形温度降低和应变速率增大TC4钛合金的流动软化程度增大,且800~850℃、应变速率1~10s-1变形时的流动软化主要是塑形流动失稳引起的,温度900~950℃、应变速率0.001~0.1s-1条件变形时,流动软化主要是片状α相的等轴化引起的。引入应变对材料常数α、n、A和Q的影响,建立了考虑应变的TC4钛合金Arrhenius本构方程,建立的本构模型精度较好,在800℃、850℃和10s-1条件以及在900℃、950℃和0.1s-1条件下,模型平均绝对误差分别为4.2%和4.3%。TC4钛合金的平均变形激活能为403kJ/mol,平均应变速率敏感指数为0.26。  相似文献   

2.
TB6钛合金热变形行为及本构模型研究   总被引:1,自引:0,他引:1  
研究材料的热变形行为及建立其本构模型是进行材料加工与模拟的基础。通过对TB6钛合金热变形行为分析,表明流变应力受应变速率的影响较显著,而变形温度对流变应力的影响程度与应变速率的大小有关。采用Arrhenius型双曲正弦方程建立了TB6钛合金流变应力本构模型。研究变形条件对TB6钛合金流变应力的影响。结果表明,可通过控制应变速率和变形激活能来控制热加工的应力水平和力能参数,为TB6钛合金塑性加工过程控制和模拟提供前提条件。  相似文献   

3.
在Gleeble-1500D热模拟机上对等离子烧结态TC4钛合金开展单向热压缩实验,研究该合金在应变速率为10-3~5 s~(-1)、变形温度为850~1050℃条件下的热变形行为。根据Arrheniu方程构建符合等离子烧结态TC4钛合金高温塑性变形的本构方程。结果表明:在初始变形阶段,由于加工硬化的作用,等离子烧结态TC4钛合金流变应力值随应变的增加迅速达到峰值应力,而后应力值开始减小并趋于稳定,表明该合金变形行为符合稳态流变特征;采用所建立的等离子烧结态TC4钛合金的Arrhenius双曲正弦本构方程能够较好地预测TC4钛合金的峰值应力,且预测值与实测值之间的平均相对误差为6. 73%。在950℃和0. 1 s~(-1)以及1050℃和5 s~(-1)条件下,模型平均相对误差绝对值分别为2. 03%和4. 67%。等离子烧结态TC4钛合金的平均变形激活能为411 k J·mol~(-1),平均应变速率敏感指数为0. 21。  相似文献   

4.
采用Gleeble-3800型热模拟试验机在变形温度为700~850℃、应变速率为0.001~1 s-1条件下对SP700钛合金进行等温恒应变速率压缩试验,分析SP700钛合金的热变形行为。首次探讨了该合金考虑变形温度对杨氏模量和自扩散系数影响的传统物理本构关系以及考虑晶界扩散和晶格扩散耦合的修正物理本构关系。结果表明,SP700钛合金的流动应力曲线为典型的动态再结晶型曲线,其流动应力随应变速率的降低和变形温度的升高而减小;传统物理本构关系和修正的物理本构关系相关系数R分别为0.986和0.965,平均相对误差AARE分别为14.4%和13.1%,说明建立的两个物理本构关系都能较好地表征该合金的流动应力行为。另外,确定了该合金在700~800℃热变形时主要扩散机制是晶界扩散,在850℃热变形时主要是晶格扩散。  相似文献   

5.
采用Gleeble 3500D热模拟试验机对TC17钛合金进行了高温压缩试验(变形温度700~950℃,应变速率0.001~10 s~(-1),真应变0.9)。结果表明:TC17钛合金的高温流变应力对应变速率和变形温度非常敏感。在高温高应变速率条件下,TC17钛合金的流变应力出现了明显的应力不连续屈服现象。建立了TC17钛合金的修正J-C本构方程,并引入相关系数R和平均相对误差AARE对方程的准确性进行了分析,与试验结果对比表明:该方程可以较准确地描述TC17钛合金的高温流动行为。  相似文献   

6.
在变形温度600℃800℃、应变速率0.01s-1800℃、应变速率0.01s-10.33s-1条件下进行热态单向拉伸试验,研究Ti-6Al-4V钛合金的变形行为,以及变形性能与变形温度、应变速率之间的关系。结果表明,Ti-6Al-4V钛合金在变形过程中呈现两种变形特征,即稳态形与软化形,且随着变形温度的升高、应变速率的降低,流动应力降低,而延伸率则升高;基于Hooke定律和Grosman方程建立的Ti-6Al-4V钛合金热态成形本构方程,在整个变形区间内可以很好的表征材料的变形行为。  相似文献   

7.
钛合金型材作为力学性能良好的轻质材料,被广泛应用于飞行器框梁等骨架零件中,其成形质量直接关系到飞机的装配精度、整机气动外形和使用寿命。为探究TC4钛合金L型材的热拉伸变形行为及本构关系,在不同的温度(600~800℃)和初始应变速率(0.00033~0.0083 s~(-1))下进行了多组单轴热拉伸试验,根据应力-应变曲线特点分析了型材热拉伸变形行为,并通过采用回归处理和参数优化的方法建立其复合型唯象本构方程,该模型预测应力和实测应力的最小相关性系数R和最大平均相对误差绝对值AARE分别为0.9641和7.5%,即建立的本构模型能够高精度表征TC4钛合金L型材的热拉伸变形行为,可作为其热变形有限元模拟的准确材料模型。  相似文献   

8.
利用Gleeble-3500热模拟试验机对TC4 ELI钛合金在两相区温度为750~950℃、应变速率为0.001~70s-1条件下进行等温恒应变速率压缩试验,分析了该合金的热变形行为,并采用Arrhenius方程和BP人工神经网络模型建立了该合金的本构关系模型。结果表明,应变速率与变形温度对TC4 ELI钛合金流变应力影响显著,流变应力随变形温度升高和应变速率降低而降低;在两相区热变形时,原始组织α相发生了不同程度的球化/动态再结晶,并且低应变速率会促进球化/动态再结晶的发生;采用Arrhenius方程和BP人工神经网络模型建立的本构方程平均误差分别为17.51%和1.36%,BP人工神经网络模型具有更高的精度,更适合用于TC4 ELI钛合金的流动应力预测。  相似文献   

9.
铸态TB6钛合金热变形行为及本构关系   总被引:1,自引:0,他引:1  
通过等温恒应变速率压缩实验研究铸态TB6钛合金在温度为800~1 100 ℃,应变速率为10-3~1 s-1条件下的热变形行为.结果表明:应变速率对铸态TB6合金流变应力的影响最显著,其次是变形温度,而应变的影响作用最小.在低温高应变速率下,流变应力曲线呈连续软化特征,而在高温低应变速率下,流变应力曲线呈稳态流变特征.铸态TB6合金的热变形激活能为200 kJ/mol,接近纯钛β相的自扩散激活能,表明在实验条件范围内主要发生动态回复过程.在Arrhenius方程基础上考虑了应变对流变应力曲线的影响,建立了能准确描述铸态TB6钛合金流变应力曲线的双曲正弦本构关系.  相似文献   

10.
11.
在变形温度分别为750,800,850,900,950,1000和1050℃,应变速率分别为0.001,0.01,0.1和1s~(-1)的条件下,对TA15钛合金进行了热压缩试验,分析了变形温度和应变速率对流动应力的影响。根据试验结果,计算了变形过程的温升,表明变形热所导致的温升大小与应变速率和应变均成正比,在T=750℃,ε=1s~(-1)的低温高应变速率条件下所产生的温升最大,可以达到122.63℃。基于Sellars-Tegart本构模型,建立了TA15钛合金热变形时的本构模型。  相似文献   

12.
在Gleeble-3500热模拟试验机上进行等温热压缩试验,得到TA11钛合金在温度为954~1074℃、应变速率为0.05~5 s~(-1)、变形量为60%条件下的真应力-真应变曲线。根据真应力-真应变曲线,分析流变应力随变形温度、应变速率和应变的变化规律。结果表明,流变应力与变形速率成正比,与变形温度成反比;利用Arrhenius双曲正弦方程和Z参数建立了TA11钛合金的热变形本构方程。经验证明,试验值与所建立的本构方程的预测值吻合较好,可用于预测TA11钛合金塑性变形过程中的变形抗力和作为有限元数值模拟的材料模型。  相似文献   

13.
在电子万能拉伸试验机上对TB8钛合金进行了恒应变速率超塑性拉伸试验(变形温度为720~880℃,应变速率为0.000 1~0.01s~(-1)),研究了拉伸流变行为,计算了超塑性拉伸变形激活能和相应的应力指数,建立了TB8钛合金应力-应变本构模型。结果表明,在同一应变速率下,流变应力随变形温度的增加而减少,同一变形温度下,流变应力随应变速率的增加而增加。在变形温度为840℃,应变速率为10~(-4) s~(-1),合金的伸长率最大,为356%;超塑性拉伸变形激活能和应力指数分别为251.25kJ/mol、2.389 5。  相似文献   

14.
利用Gleeble-3500型热模拟试验机对Zr-4合金试样进行等温恒应变速率压缩实验,对其热变形行为进行分析,综合考虑变形温度对Young's模量和自扩散系数的影响,建立了 Zr-4合金基于应变耦合的物理本构模型.研究结果表明:合金的峰值应力对变形温度和应变速率敏感,峰值应力会随应变速率的增加或变形温度的降低而增大;...  相似文献   

15.
针对"直接热挤压"和"热挤压+脉冲锻打"TA15钛合金薄壁型材的室温力学性能及差异开展实验研究。通过对型材不同位置切取的试样进行拉伸试验,获得了型材抗拉强度和屈服强度分布规律,并对性能数据分布的均匀性和一致性进行深入分析。结果表明,"直接热挤压"态型材的抗拉强度和屈服强度数值分布较分散,强度离散系数大于3.5%;而"热挤压+脉冲锻打"态型材的抗拉强度和屈服强度数值分布相对集中,不同批次型材之间的力学性能一致性较好,强度离散系数均小于3%。进一步分析表明,2种状态型材之间的性能差异与型材表面状态、表面细晶层和截面尺寸有关。脉冲锻打能够改善型材表面细晶层分布的均匀性和截面尺寸精度,从而改善型材力学性能分布的均匀性和一致性。  相似文献   

16.
针对TC4钛合金薄壁弯管弯曲过程中的内侧起皱、外侧开裂、横截面畸变和弯曲回弹等成形缺陷,提出了钛合金薄壁弯管热气胀成形工艺,解决了以上成形缺陷,并通过调控工艺参数控制TC4钛合金的应变硬化与应变速率硬化的协同作用,提升了薄壁弯管的壁厚均匀性。在此基础上,开展了TC4钛合金薄壁弯管的热气胀成形实验。最终成形出满足产品使用要求的Φ206 mm×1.5 mm×R495 mm的TC4钛合金薄壁弯管,最大不圆度仅为0.25%,最大减薄率为16.88%。结果表明:在TC4钛合金薄壁弯管热气胀成形过程中,控制成形温度及应变速率等主要工艺参数,可以提高薄壁弯管的成形精度和壁厚均匀性,显著改善成形弯管的产品质量。  相似文献   

17.
在Gleeble-3800热模拟机上对锻态β-CEZ钛合金在变形温度800~1000℃、应变速率0.01~10 s-1、变形程度70%的参数下进行了热模拟试验。根据真应力—真应变曲线研究了变形温度和应变速率对应力的影响,利用Arrhenius双曲正弦方程和Z参数建立了β-CEZ钛合金热变形本构方程。结果表明:β-CEZ钛合金的流变应力与变形速率成正比,与变形温度成反比;在试验条件下β-CEZ钛合金表现出动态回复和动态再结晶两种软化机制。误差分析表明,建立的热变形本构方程与试验值基本一致,能为β-CEZ钛合金有限元模拟及变形工艺选取提供理论依据。  相似文献   

18.
采用Gleeble-1500型热模拟试验机对粉体成型Zr-2合金进行等温恒应变速率热压缩实验,研究其在热变形温度650~850℃,应变速率0.001~5 s-1条件下的热变形行为。基于热压缩实验数据,采用基于应变修正的Arrhenius方程构建了粉体成型Zr-2合金的变形本构模型。研究结果表明:变形温度对粉体成型Zr-2合金的流变应力影响明显,随着变形温度的增加,材料的流变应力大幅度降低。同时,粉体成型Zr-2合金的热变形流变应力表现出对应变速率敏感的特征,即变形抗力随着应变速率的上升而增加,但在低温(650、700℃)、高应变速率5 s-1条件下变形抗力增加并不明显。基于应变修正的Arrhenius方程构建的粉体成型Zr-2合金的本构方程,其相关系数为0.9827,可以较为准确地预测该材料的流变应力。  相似文献   

19.
基于AZ80镁合金高温热压缩成形试验,对合金热变形本构模型及动态再结晶行为进行了研究。采用双曲正弦模型回归分析变形温度和应变速率对AZ80镁合金热变形流动应力的影响,建立了AZ80合金高温塑性变形的本构模型;定量分析了镁合金发生动态再结晶的临界条件与变形参数之间的函数关系,基于Avrami方程建立了AZ80镁合金动态再结晶动力学模型。  相似文献   

20.
《轻金属》2017,(5)
本构方程很好地表达了材料的应力与应变速率、变形温度等热加工参数之间的关系,是描述材料变形的基本信息和有限元模拟中不可或缺的数学模型。基于两种典型的轻合金镁合金和钛合金,借助热模拟试验,对四种现有本构模型进行了示例对比分析,发现这四种本构模型都能在一定程度上很好地描述材料的流变应力与热变形参数之间的关系。基于Arrhenius方程的本构模型是在单一应变下建立的,反映了单一应变下温度、应变速率和应力之间的相互作用关系;基于应变补偿的本构模型则体现了温度、应变、应变速率和应力之间的复杂非线性关系;基于ANN的本构模型可以实现其他非实验条件的应力内插预测;基于物理概念的本构模型适合于高速率且应变硬化占主导的变形过程流变应力的预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号