首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
扩孔螺栓连接型耗能段由短剪切型耗能段和剪切扩孔型螺栓连接组成,可有效地提高耗能段的延性和耗能能力,并减小耗能段损伤,由此提高偏心支撑结构震后功能恢复能力。分别设计1个短剪切型耗能段、3个考虑摩擦滑移的扩孔螺栓连接型耗能段、1个普通扩孔螺栓连接型耗能段试件,并进行低周往复加载研究,得到其变形或破坏模式、滞回曲线、骨架曲线和力学模型等。试验结果表明,扩孔螺栓连接型耗能段先后经历摩擦滑移和耗能段承载2个过程,且破坏模式和承载力均与纯短剪切型耗能段相同。所得力学模型中,短剪切型耗能段包括弹性、弹塑性和塑性段;考虑摩擦滑移试件包括弹性和滑移段;扩孔螺栓连接型耗能段包括弹性、滑移、弹塑性和塑性段,且在达到相同位移时耗能段变形和损伤将明显减小。最后,对扩孔螺栓连接型耗能段进行有限元分析,可准确模拟其滞回曲线和破坏模式。  相似文献   

2.
消能减震结构设计参数研究与试验验证   总被引:10,自引:1,他引:9  
本文就消能减震结构设计参数,即消能部件的支撑刚度、层问最大阻尼力与结构层问屈服力比值等恢复力模型参数的选取进行了讨论.通过对消能装置的耗能特性理论分析,导出了消能装置产生的层间等效阻尼比与这些参数的关系曲线,建议了这些参数的合理取值范围.同时通过对两个消能减震试验结果的分析,验证了本文建议的参数取值的合理性.  相似文献   

3.
带可替换耗能梁段的偏心支撑钢框架具有震后修复方便、经济等优点,但目前国内外学者对该类型的研究很少。为此,设计16组与偏心支撑钢框架采用螺栓连接的腹板连接型耗能梁段,并对16组试件进行数值模拟分析,讨论截面尺寸、耗能长度、加劲肋间距、加劲肋布置以及综合参数等变化参数对腹板连接型耗能梁段在低周往复荷载作用下的滞回性能、骨架曲线的影响,建立腹板连接型耗能梁段简化的恢复力模型。结果表明,影响腹板连接型耗能梁段耗能的主要参数是截面尺寸,建立的恢复力模型与模拟的骨架曲线对比吻合较好,可以为此类耗能梁段弹塑性分析作为参考。  相似文献   

4.
铅挤压消能支撑框架模型结构试验研究   总被引:1,自引:0,他引:1  
通过铅挤压消能器的低周反复加载试验,以及安装有铅挤压消能器的钢筋混凝土消能支撑框架模型结构的伪静力试验,主要研究了铅挤压消能器单独受反复荷载时的消能性能以及其在模型结构中所起的消能作用,模型结构的破坏机理和整体消能能力。研究结果表明,铅挤压消能器具有很好的消能能力,在模型结构总耗能中占据了很大的比例,模型结构具有较好的耗散地震能量的能力。  相似文献   

5.
针对工程中的实际需要,提出一些新型的粘弹性消能支撑型式,分析了它们的受力特点,推导了消能支撑变形的表达式,并给出了其控制力的计算公式;最后,研究了影响结构消能效果的设计参数,给出了设计参数合理的取值范围.  相似文献   

6.
提出一种用于偏心支撑结构中的部分自复位耗能段,主要包括自复位形状记忆合金(shape memory alloy, SMA)支撑和扩孔螺栓连接型耗能段,具有耗能能力和自复位能力强、构件损伤小、震后功能可恢复等特点。基于部分自复位耗能段的设计方法,合理设计其试验模型,由此得到变形模式和滞回曲线等。随后采用校正的有限元法对部分自复位耗能段力学性能进行研究,主要考虑SMA面积、高强螺栓预拉力和垫片滑移系数的影响。研究结果表明:滑移阶段自复位耗能段中耗能段处于滑移并保持相对静止状态;随后非滑移阶段耗能段开始承载、耗能和非弹性变形等,整个过程中自复位SMA支撑提供耗能和复位能力,以及减小构件残余变形。基于不同因素下的分析结果,提出滑移阶段和非滑移阶段下自复位耗能段简化的力学模型,为偏心支撑结构的抗震设计与分析提供新的思路和理论基础。  相似文献   

7.
提出利用筒中筒结构内筒和外筒的相对运动带动耗能装置耗能的的筒中筒结构内部摩擦连接消能减震体系。该体系将结构的内筒和框筒用专门设计的摩擦连接装置连接,罕遇地震下摩擦连接装置滑移产生滞回耗能。文中阐明了该体系的消能减震原理和构造特点,并通过对一栋40层筒中筒结构进行有限元分析,验证了该体系具有良好的抗震性能,可供工程实践参考。  相似文献   

8.
为了提高装配式框架结构的抗震性能,提出了不同类型的钢制耗能铰阻尼器,即将预制梁、柱用钢制铰进行连接,在铰的上、下或两侧安装软钢耗能元件.对几种耗能铰阻尼器的构造形式、抗震性能进行总结,选取一种构造简单、抗震性能较好的T形耗能铰阻尼器进行抗震性能和力学模型研究.采用ABAQUS软件对T形耗能铰阻尼器的试验进行数值模拟,在此基础上建立了 24 个有限元模型对T形耗能元件的翼缘削弱程度和T形截面尺寸进行参数分析,并对不同影响因素进行量化得到耗能铰阻尼器的骨架曲线计算公式,最后,对公式的正确性进行了验证.结果表明,该T形耗能铰阻尼器具有良好的承载力、延性和耗能能力,所提出的骨架曲线准确率较高,可为该类阻尼器的设计提供参考.  相似文献   

9.
    
Inelastic deformation capacity of links is a factor that significantly influences design of steel eccentrically braced frames (EBFs). The link rotation angle is used to describe inelastic link deformation. The link rotation angle is generally calculated by making use of design story drifts that in turn are calculated by modifying the elastic displacements by a displacement amplification factor. This paper presents a numerical study undertaken to evaluate the displacement amplification factor given in ASCE7‐10 for EBFs and the rigid‐plastic mechanism used for calculating link rotation angles. A total of 72 EBFs were designed by considering the number of stories, the bay width, the link length to bay width ratio, and the seismic hazard level as the prime variables. All structures were analyzed using elastic and inelastic time history analyses. The results indicated that the displacement amplification factor given in ASCE7‐10 provides unconservative estimates of the story drifts. On the other hand, the rigid‐plastic mechanism provides conservative estimates of link rotations. Based on the results of the numerical study, a new set of displacement amplification factors that vary along the height of the structure and modifications to the rigid‐plastic mechanism were developed. In light of the proposed modifications, the EBFs were redesigned and analyzed using inelastic time history analysis. The results indicated that the proposed modifications provide improvements for the displacement amplification factor and link rotation angle calculation procedures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
    
This paper reports findings of an experimental study conducted on replaceable links for steel eccentrically braced frames (EBFs). A replaceable link detail which is based on splicing the directly connected braces and the beam outside the link is proposed. This detail eliminates the need to use hydraulic jacks and flame cutting operations for replacement purposes. Performance of this proposed replaceable link was studied by conducting eight nearly full‐scale EBF tests under quasi‐static cyclic loading. The link length ratio, stiffening of the link, loading protocol, connection type, bolt pretension, gap size of splice connections, and demand‐to‐capacity ratios of members were considered as the prime variables. The specimens primarily showed two types of failure modes: link web fracture and fracture of the flange at the link‐to‐brace connection. No failures were observed at the splice connections indicating that the proposed replaceable link detail provides an excellent response. The inelastic rotation capacity provided by the replaceable links satisfied the requirements of the AISC Seismic Provisions for Structural Steel Buildings (AISC341–10). The overstrength factor of the links exceeded 2.0, which is larger than the value assumed for EBF links by design provisions. The high level of overstrength resulted in brace buckling in one of the specimens demonstrating the importance of overstrength factor used for EBF links. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
高强钢组合偏心支撑钢框架是一种新型的抗震结构体系,为分析其抗震性能,利用ABAQUS有限元软件建立了简化分析模型。在验证该简化模型合理有效的基础上,建立了某十层算例的整体模型,施加竖向荷载的同时施加水平倒三角形循环荷载作用,进而分析了该算例的滞回性能。研究表明:本文提出的简化分析模型不仅可以较准确的模拟该结构体系的延性和抗侧刚度,还可以有效预测结构的变形分布和非线性性能。  相似文献   

12.
    
Eccentrically braced frames (EBFs) can be repaired after a major earthquake by replacing the links. The link replacement is not a straightforward process and is influenced by the type of the link and the amount of residual frame deformations. The past decade has witnessed the development of different types of replaceable links such as end-plated links, web connected links, bolted flange and web spliced links, and collector beam and brace spliced links. All of the developed replaceable link details, except the web connected links, are not suitable for link replacement under residual frame drift. In this paper, a detachable replaceable link detail which is based on splicing the link at its mid-length is proposed. The detail is well suited for installation under residual frame drifts. In addition, the weight and size of the members to be transported and erected are reduced significantly, thereby facilitating the replacement procedure. Performance of this proposed replaceable link is studied by conducting six nearly full scale EBF tests under quasi-static cyclic loading. The link length ratio, type of end-plated mid-splice connection, and the amount of residual drift are considered as test variables. The test results revealed that the inelastic rotation capacity of the detachable replaceable links exceeds the requirements of the AISC Seismic Provisions for Structural Steel Buildings. No failures are observed in the end-plated mid-splice connections demonstrating the potential of the proposed details. The detachable replaceable links are investigated by numerical analysis as well to further validate their applicability and to develop design recommendations.  相似文献   

13.
    
The Asymmetric Friction Connection (AFC) remains elastic during moderate earthquake shaking but slides and dissipates energy through friction during severe earthquake shaking. The sliding friction forces developed are dependent on the clamping force in the connection which is provided by fully tensioned bolts which pass through slotted holes. During sliding these bolts are subject to moment and shear as well as axial force. Moment–shear–axial force interaction reduces the clamping axial force on the sliding interfaces thereby reducing the sliding shear resistance (Vss). Two methods to evaluate the moment–shear–axial force interaction have been proposed so that the sliding shear strength can be quantified, but as yet, these methods are not robust. This paper describes the results of 60 tests undertaken to improve the two methods, namely the moment–shear–axial force bolt model and the effective coefficient of friction method, for AFCs with high hardness steel shims. The bolts were M16 to M30 bolts and cleat thicknesses ranged from 12 mm to 25 mm. It is shown that either method may be used in design as the results obtained are similar. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
    
Structural damage in buildings designed according to the dissipative design philosophy can be significant, even under moderate earthquakes. Repair of damaged members is an expensive operation and may affect building use, which in turn increases the overall economic loss. If damage can be isolated to certain dissipative members realized to be removable following an earthquake, the repair costs and time of interruption of building use can be reduced. Dual structural configurations, composed of a rigid subsystem with removable ductile elements and a flexible subsystem, are shown to be appropriate for the application of removable dissipative element concept. Eccentrically braced frames with removable links connected to the beams using flush end‐plate bolted connections are investigated as a practical way of implementing this design concept. High‐strength steel is used for members outside links in order to enhance global seismic performance of the structure by constraining plastic deformations to removable links and reducing permanent drifts of the structure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
耗能梁段作为偏心支撑结构的耗能元件,在大震作用下通过弹塑性变形吸收地震能量,保护主体结构处于弹性受力状态。现行规范基于强度的设计理论,为了保证耗能梁段进入塑性或破坏,梁柱构件需要进行放大内力设计,导致截面过大,而且基于强度的设计方法很难保证结构的整体破坏状态。目前,抗震设计越来越重视基于性能的设计思想,该方法能够评估结构的弹塑性反应。对于高强钢组合偏心支撑,其中耗能梁段和支撑采用Q345钢,框架梁柱采用Q460或者Q690高强度钢材,高强钢不仅带来良好的经济效益,而且能够推广高强钢在抗震设防区的应用。利用基于性能设计方法设计了4种不同形式的高强钢组合偏心支撑钢框架,包括K形、Y形、V形和D形,考虑4层、8层、12层和16层的影响。通过Pushover分析和非线性时程分析评估该结构的抗震性能,研究结果表明:4种形式的高强钢组合偏心支撑钢框架具有类似的抗震性能,在罕遇地震作用下,几乎所有耗能梁段均参与耗能,而且层间侧移与耗能梁段转角沿高度分布较为均匀。其中:D形偏心支撑具有最大的抗侧刚度,但延性较差,而Y形偏心支撑的抗侧刚度最弱,但延性最佳。  相似文献   

16.
    
The AISC Seismic Provisions for Structural Steel Buildings (AISC 341-16) provide a testing protocol for qualification of link-to-column connections in eccentrically braced frames (EBFs). This symmetrical testing protocol was developed by conducting nonlinear time history analysis on representative EBFs designed according to the International Building Code. Although the testing protocol is intended for qualification of link-to-column connections, many research programs have employed this recommended protocol for testing of shear links. Recent numerical investigations on constructed EBFs and archetype models showed that links can be subjected to one-sided loadings with significantly higher link rotation angles than the codified limits. A numerical study has been undertaken to develop nonsymmetrical loading protocols for shear links in EBFs. Pursuant to this goal, 20 EBF archetypes were designed according to the ASCE7-16 standard. The main parameters investigated were the link length to bay width ratio (e/L), number of stories, type of EBF, and the ground motion level. The archetypes were subjected to maximum considered earthquake and collapse level earthquake as recommended by FEMA P695. The results showed that the history of link rotation is single sided and depends strongly on e/L and the level of ground motion. Nonsymmetrical loading protocols that depend on the aforementioned variables were developed and are presented herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号