首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The role of the gas–liquid separator on hydrodynamic characteristics in an internal‐loop airlift reactor (ALR) was investigated. Both gas holdup and liquid velocity were measured in a 30 dm3 airlift reactor with two different head configurations: with and without an enlarged separator. A magnetic tracer method using a neutrally buoyant magnetic particle as flowfollower was used to measure the liquid velocity in all sections of the internal‐loop airlift reactor. Average liquid circulation velocities in the main parts of the ALR were compared for both reactor configurations. At low air flow rates the separator had no influence on gas holdup, circulation velocity and intensity of turbulence in the downcomer and separator. At higher superficial air velocities, however, the separator design had a decisive effect on the hydrodynamic parameters in the downcomer and the separator. On the other hand, the gas holdup in the riser was only slightly influenced by the separator configuration in the whole range of air flow. Circulation flow regimes, characterising the behaviour of bubbles in the downcomer, were identified and the effect of the separator on these regimes was assessed. © 2001 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Airlift reactors are of interest for many different processes, especially for three‐phase systems. In this study the behavior of a high‐loading three‐phase external‐loop airlift reactor was examined. In particular, the effect of parameters such as airflow rate (riser superficial gas velocities between 0.003 and 0.017 m s?1), solids loading (up to 50%, v/v) on liquid circulation velocity in the air‐water‐alginate beads system as a crucial hydrodynamic parameter was studied. RESULTS: It was observed that increase of the airflow rate resulted in increase of the liquid velocity in the system. The same result but less pronounced was observed by introducing small amounts of solid particles up to 7.5% v/v. However, further introduction of solids caused decrease of the liquid velocity. Laminar regime for the liquid circulation was observed for low gas velocities. Minimum gas velocities for recirculation initiation in the reactor were determined for all solid loadings and linear dependence on the solid content was found. Gas holdups for the three‐phase system were larger than for the two‐phase system in all experiments. A simple model for predicting the liquid circulation velocity in the three‐phase system with high solid loading of low‐density particles was developed. This model is based on the viscosity of integrated medium (solid + liquid) which is a new aspect to analyze this phenomenon. CONCLUSIONS: The developed model shows very good agreement with the experimental results for all solid loadings. It also includes the influence of reactor geometry on the liquid circulation velocity thus enabling optimization. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
Hydrodynamics and mass transfer characteristics of a three-phase airlift reactor were studied in a rectangular split-vessel reactor and using an air-seawater-marine sediment system. Experiments were conducted over a range of downcomer to riser cross-sectional area ratios (AD/AR = 0.65 to 1.0) for two-phase systems and for five sediment concentrations (5 to 25% w/v) using marine sediments. The influence of higher sediment concentrations (30 to 50% w/v) was examined for AD/AR = 1. The presence of fine sediment particles in the system had little effect on hydrodynamic and mass transfer parameters compared to the two-phase systems up to 25% loading, decreasing at higher loadings. The airlift reactor was found to meet the dissolved oxygen demand needed for a contaminated sediment treatment process. Axial distribution of the particles was uniform along the riser and the downcomer. Correlations were developed that described the hydrodynamic and mass transfer behaviour for all experimental conditions examined.  相似文献   

4.
A new process for D ‐glucose hydrogenation in 50 wt% aqueous solution, into sorbitol in a 1.5 m3 gas–liquid–solid three‐phase flow airlift loop reactor (ALR) over Raney Nickel catalysts has been developed. Five main factors affecting the reaction time and molar yield to sorbitol, including reaction temperature (TR), reaction pressure (PR), pH, hydrogen gas flowrate (Qg) and content of active hydrogen, were investigated and optimized. The average reaction time and molar yield were 70 min and 98.6% under the optimum operating conditions, respectively. The efficiencies of preparation of sorbitol between the gas–liquid–solid three‐phase flow ALR and stirred tank reactor (STR) under the same operating conditions were compared. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
A new model for the liquid circulation rates in airlift reactor (ALR) is presented. The model is based on the energy balance for the flow loop (riser, turn riser‐downcomer, downcomer, and turn downcomer‐riser) coupled with a drift flux theory of two‐phase flow gas‐liquid system, considering a bubbly flow regime. The predicted values of the liquid circulation rates by the developed model are compared with experimental results performed in a 22 dm3 internal loop airlift reactor and with the results obtained in the literatures. The proposed model predicted the experimental results very well. Slip velocity relationship based on the drift flux model was proposed; including the gas holdup, bubble size and the liquid physical properties. The predicted slip velocity was similar to that obtained from the literature. The study revealed that appropriate arrangements of internal bioreactor parts can positively influence the liquid circulation velocity at the same energy consumption. The proposed models are useful in the design; scale up and characterization of the internal loop airlift reactors, and provides a direct method of predicting hydrodynamic behaviour in gas‐liquid airlift reactors.  相似文献   

6.
The addition of select polymer beads to stirred tank bioscrubber systems has been shown to greatly enhance the removal and treatment of toxic VOCs via the capture and sequestration of poorly soluble compounds such as benzene, and the release of these materials, based on equilibrium partitioning, to microorganisms in the aqueous phase. In this study, oxygen volumetric mass transfer coefficients were determined for an 11 L airlift vessel containing tap water alone, tap water with Nylon 6,6 polymer beads (10% v/v), and tap water with silicone rubber beads (10% v/v), over various inlet gas flow rates, with the aim of initially characterizing a low-energy pneumatically agitated reactor (concentric tube airlift). In addition, oxygen transfer rates into the airlift with and without polymers with high oxygen affinity were determined. To further characterize this reactor system, a residence time distribution analysis was completed to determine hydrodynamic parameters including the Peclet number (Pe), circulation time (tc) and mixing time (tm) over various gas flow rates for the airlift containing tap water with and without silicone rubber. It was found that the addition of silicone rubber beads, which has a high affinity for oxygen, reduced the measured volumetric mass transfer coefficient relative to a system without polymers due to oxygen sorption during the dynamic period of testing, but increased the overall amount of oxygen that was transferred to the system during the dynamic period. The addition of Nylon 6,6, which has very low oxygen uptake, allowed for estimation of the physical effect of solids addition on gas-liquid mass transfer and it was found that there was no effect on the measured volumetric mass transfer coefficient relative to a system without polymers. However, hydrodynamic parameters revealed that the addition of silicone rubber into an airlift vessel improves liquid phase mixing. This investigation has defined key operational features of a low-energy three-phase airlift bioscrubber system for the treatment of toxic VOC substrates.  相似文献   

7.
The effects of solids loading on gas hold-up and oxygen transfer in external-loop airlift bioreactors with non-Newtonian fermentation media are discussed. Experiments were performed in two model external-loop airlift bioreactors with aqueous solutions of carboxymethyl cellulose (CMC) and xanthan gum representing non-Newtonian flows. Low-density plastic particles of 1030 and 1300 kg m−3 were used and the solids loading was varied in the range 0–20% (v/v). For the inelastic non-Newtonian CMC aqueous solutions, the presence of low-density solid particles slightly increased the riser gas hold-up, ϕgr, but decreased the volumetric mass transfer coefficient, kLa. On the other hand, ϕgr decreased but kLa increased with solids loading in the viscoelastic non-Newtonian xanthan gum aqueous solution. The extent of these effects depended on non-Newtonian flow behavior. Theoretical models of riser gas hold-up and volumetric mass transfer coefficient have been developed. The capability of the proposed models was examined using the present experimental data obtained in the model external-loop airlift bioreactors and the available data in the literature. The data were successfully correlated by the proposed correlations except the results for kLa coefficient in the xanthan gum solution.  相似文献   

8.
The gas–liquid mass transfer performances of a novel three-phase reactor involving both airlift and mechanical stirring have been tested using aqueous solutions of glucose. Stirring in addition to classical airlift leads to an importance increase of kLa. The absolute increase depends mainly on the stirrer speed are not on the gas velocity. A slight effect of the solid loading with a maximum at about 2% (w/v) was observed. Two correlations that show the influence of physical parameters are proposed for both water and glucose solutions. © 1998 SCI  相似文献   

9.
Experiments were performed to study the transient behavior of an internal-loop airlift bioreactor for degradation of toluene in a waste gas stream. The gas pollutant flowed into the reactor from the bottom, and it was then degraded by the microorganisms suspended in the liquid phase. Whenever the operating condition was changed, the gas phase toluene concentration initially increased sharply and the time required to reach a new steady-state concentration was short except when the dissolved oxygen decreased to below about 2KO, where KO was Monod constant for oxygen in the microbial kinetics. However, even though the gas phase toluene concentration had already reached a new steady state, the whole system still did not yet reach a new steady state. It took 960-1850 s for the whole system to reach a new steady-state except when the dissolved oxygen decreased to below about 2KO in this airlift bioreactor. For latter cases, it took 4990-7065 s. Moreover, the time required to reach a new steady state for the whole system increased with increasing input gas phase toluene concentration.A mathematical model was developed to describe the dynamic behavior of toluene degradation in the internal-loop airlift bioreactor. The mathematical model took into account the gas and liquid flow patterns in various sections (e.g. riser, gas-liquid separator, downcomer and bottom), the gas-liquid mass transfer of the reactants and the microbial kinetics. The dynamic behavior of the internal-loop airlift bioreactor simulated by the proposed model showed good agreement with the experimental results.  相似文献   

10.
Extensive experimental studies on internal‐loop airlift reactors, including center‐rising (CR‐ALR) and annulus‐rising airlift reactors (AR‐ALR), have been reported in the literature. However, to the best of the authors’ knowledge, the effects of the aeration mode on the local hydrodynamics remain an under‐investigated area, especially for complex culture media. At present, it is difficult to select the best aeration mode for ALRs due to limited understanding of the pros and cons of the different modes. This study presents a detailed quantitative investigation of the overall gas holdup, local liquid velocity, liquid circulation time, shear rate distribution, and volumetric mass transfer coefficient in center‐ and annulus‐rising airlift bioreactors to better understand the effect of aeration mode on airlift bioreactor performance. Particle image velocimetry is employed to conduct local measurements. The results show that the overall gas holdup, liquid circulation time, and volumetric mass transfer coefficient are larger in the AR‐ALR than in the CR‐ALR. The local liquid velocity circulating into the downcomer of the AR‐ALR, which contributes to bubble entrainment and therefore to overall gas holdup, is higher than in the CR‐ALR. It was observed that a large circulation loop formed in the CR‐ALR, whereas two counter‐looping circulation cells appeared in the AR‐ALR. It was also found that the shear rate field was more uniform in the AR‐ALR than the CR‐ALR although the shear rates were similar in magnitude.  相似文献   

11.
In the present investigation the effects of the addition of organic additives (propanol, benzoic acid, iso‐amyl alcohol and carboxymethyl cellulose) on the critical gas velocity, (Usg)c, in an internal airlift loop reactor with low‐density particles (Nylon‐6 and polystyrene) were reported. Whereas the (Usg)c was reduced by adding the above additives, it increased with solids loading and density of the particles. The draft tube‐to‐reactor diameter ratio (DE/D) in the range of 0.5–0.6 gave minimum (Usg)c values. The proposed dimensionless correlation predicted the experimental data well. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
Global hydrodynamic characteristics, liquid mixing and gas‐liquid mass transfer for a 63 L split‐rectangular airlift reactor were studied. Correlations for gas holdup and overall liquid circulation velocity were derived for the air‐water system as a function of the specific power input; these were compared to data and correlations for reactor volumes between 4.7 L and 4600 L. A partial recirculation of small bubbles in the riser was observed when Ugr > 0.03 m/s, which was attributed to the use of a single‐orifice nozzle as the gas phase distributor. The dimensionless mixing time and the overall axial dispersion coefficient were nearly constant for the range of gas flow rates studied. However, values of KL/dB were greater than those reported in previous studies and this is caused by the partial recirculation of the gas phase in the riser. While scale effects remain slight, the use of a gas distributor favouring this partial recirculation seems adequate for mass transfer in split‐rectangular airlift reactors.  相似文献   

13.
BACKGROUND: The potential of organic liquid solvents and solid polymers to enhance CH4 mass transfer was studied in a two‐phase partition internal loop airlift reactor operated with gas recirculation under biotic and abiotic conditions. A preliminary screening of the most common liquid solvents (silicone oil 20 cSt, silicone oil 200 cSt and 2,2,4,4,6,8,8‐heptametilnonane) and solid polymers (Kraton® G6157, Desmopan® DP9370A and Elvax® 880) resulted in the selection of silicone oil 200 cSt (S200) and Desmopan DP9370A (D9370) for further investigation based on their high affinity for CH4, biocompatibility and nonbiodegradability. RESULTS: Under abiotic conditions, the increase in gas recirculation from 0 to 1 vvm in the absence of a transfer vector increased the overall mass transfer coefficient for oxygen (kLa) by 195%. The presence of S200 and D9370 at 10% (v/v) under operation at 1 vvm of gas recirculation rate mediated an increase in kLa of 100% and 136%, respectively. Likewise, the increase in gas recirculation from 0 to 1 vvm in the absence of a transfer vector and in the presence of S200 during the continuous biodegradation of methane at 3% (v/v) and 7.3 min empty bed residence time resulted in increases in CH4 removal and CO2 production rates of 47% and 36%, respectively. Nevertheless, no significant enhancement in CH4 removal due to the presence of 10% of Desmopan or silicone oil was recorded under operation at 1 vvm. CONCLUSIONS: These results suggest that microbial activity rather than mass transport could be the limiting step in biological CH4 abatement in this system, contrary to that observed in previous studies with stirred tank reactors, where the organic phase addition increased methane biodegradation. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
The influence of solids concentration and static mixers on the hydrodynamics of the gas phase was studied for a three-phase fluidized bed bioreactor (air, nutrient solution, biocatalyst Ca alginate beads). Axial gas hold-up profiles, radial gas velocity profiles, mean bubble diameter and gas/liquid interfacial area per unit volume were measured in a bubble column (DR = 0.142 m, HR = 1.748 m). The influence of solids concentration on the gas hold-up is insignificant; static mixers enhance the gas hold-up in the reactor volume element in which they are installed. Axial gas velocity decreases with increasing solids concentration. At high solids concentrations, static mixers exert little influence on the gas phase but, at low concentrations, they do. A model is suggested to describe the influence of solids concentration (characterized by turbulent viscosity vt) and static mixers (characterized by profile parameter n) on the gas velocity profile.  相似文献   

15.
Gas dispersion in an airlift reactor focusing on the closure law on turbulent contribution of added mass is presented. A data bank for bubbly flow in an airlift reactor is presented. The liquid velocity is measured by hot film anemometry and gas fraction and velocity are measured with an optical probe. The sensitivity of numerical simulations of gas dispersion to the modeling of turbulent contribution of added mass is shown. Without the turbulent contribution, the bubbles move toward the region where the turbulence is high and the pressure is low. When the turbulent contribution is introduced, the bubble migration towards the low pressure region is counter‐balanced and the void fraction profile is significantly modified. The modeling of the turbulent contribution of added mass is expressed in terms of the turbulent correlations in the gas phase, uGiuGj , that can be related to the Reynolds stress in the liquid phase, uiuj . © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

16.
Toluene, a kind of volatile organic compound (VOC), is widely used as a solvent (paints and coatings, gums, resins, rubber) as well as a reagent (medicines, dyes, perfumes) and is one of the components of gasoline. Over the more recent decades, many studies have led to the development of biological methods to treat toluene. This paper presents the results of a study on the treatment of airborne toluene using a laboratory‐scale gas–liquid–solid three‐phase airlift loop bioreactor containing immobilized cells. Based on the optimum operating conditions such as the temperature of 28–30 °C, pH of 7.0–7.2, and an empty bed residence time (EBRT) of 39.6 s, a continuous bioprocess showed that this immobilized airlift loop bioreactor had a steady‐state performance within 15 days, the outlet concentrations of toluene were lower than the national emission standard in China (GB 16297‐1996), and the chemical oxygen demand and NH4+‐N of the effluent also satisfied the primary discharge standard in China (GB 8978‐1996). In addition, this immobilized airlift loop bioreactor had a good ability to tolerate shock loads, while the maximum elimination capacity of toluene was 168 g m?3 h?1 which was higher than those not only in biofilters and biotrickling filters but also in the airlift bioreactor with free microorganisms. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
The hydrodynamic characteristics and heterogeneous structures in an airlift loop reactor (ALR) are analyzed by a computational fluid dynamics (CFD) approach. Based on the two‐fluid model, a modified cluster structure‐dependent (CSD) drag model under consideration of the cluster effects is applied to the prediction of the non‐uniform flow structure in the ALR. In comparison with experimental data and the traditional drag model, the present model enables a better prediction. The distributions of the local granular temperature in different regions of the ALR are indicated. The granular temperature in the particle diffluence region was found to be higher than that in the draft tube and annular zones.  相似文献   

18.
A low‐cost and simple magnetic particle tracer method was adapted to characterize the hydrodynamic behavior of an internal‐ and an external‐loop airlift reactor (ALR). The residence time distribution of three magnetic particles differing in diameter (5.5, 11.0 and 21.2 mm) and with a density very close to that of water was measured in individual reactor sections. The measured data were analyzed and used to determine the velocity of the liquid phase. Validation of the experimental results for liquid velocity was done by means of the data obtained by an independent reference method. Furthermore, analysis of the differences found in the settling velocity of the particle in single‐liquid and gas‐liquid phases was carried out, using a simplified 3D momentum transfer model. The model considering particle‐bubble interaction forces resulting from changes in the liquid velocity field due to bubble motion was able to predict satisfactorily the increase in the particle settling velocity in the homogeneous bubbly regime. The effective drag coefficient in two‐phase flow was found to be directly dependent on particle Reynolds number to the power of ? 2 but independent of gas flow‐rate for all particle diameters studied. Based on the experimental and theoretical investigations, the valid exact formulation of the effective buoyancy force necessary for the calculation of the correct particle settling velocity in two‐phase flow was done. In addition, recommendations concerning the use of flow‐following particles in internal‐loop ALRs for liquid velocity measurements are presented. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
The time-averaged and transient local solid fractions in a gas–solid airlift loop reactor (ALR) were investigated systematically by experiments and CFD simulations. To demonstrate the macro-flow pattern, the time-averaged local solid fractions in four regions of the ALR were measured by optical fiber probe under the conditions of different superficial gas velocities and particle circulation fluxes. The experimental results show that the lateral distribution of time-averaged local solid fraction is a core-annulus or heterogeneous structure in the three regions (draft tube, bottom region, particle diffluence region), but a uniform lateral distribution in the annulus. The operating conditions have different effects on the lateral distribution of time-averaged local solid fraction in each region. In the CFD simulation, a modified Gidaspow drag model considering the formation of particle clusters was incorporated into the Eulerian–Eulerian CFD model with particulate phase kinetic theory to simulate and analyze the transient local solid fraction and the two-phase micro-structures in the gas–solid ALR. The predicted values of solid fraction were compared with the experimental results, validating the drag model. The contours of transient flow field indicate that the flow field of the ALR should be divided into five flow regions, i.e., draft tube, annulus, bottom region, particle diffluence region and constrained back-mixing region, which further improves the understanding of the airlift reactor where only four divisions were determined from the experiments. The transient local solid fraction and its probability density function profoundly reveal the two-phase micro-structures (dilute phase and emulsion phase or cluster phase in the constrained back-mixing region) and explain the heterogeneous phenomenon of solid fraction in the ALR. The dilute phase tends to exist in the center of bed, while the emulsion phase mainly appears in the wall region. The results also indicate that the gas–solid ALR has the common characteristic of aggregative fluidization similar to that in normal fluidized beds. The simulated two-phase transient micro-structures provide the appropriate explanations for the experimental core-annulus macro-structures of time-averaged local solid fraction.  相似文献   

20.
A new apparatus, the inverse fluidized bed biofilm reactor, is described. Introduction of the so called inverse fluidized bed, in which low density particles covered by a biofilm are fluidized by downflow of the liquid, allows control of the biofilm thickness and provides a high oxygen concentration in the reacting liquid. Characteristics of the reactor were studied by carrying out two important biotechnological processes: aerobic wastewater treatment by a mixed bacterial culture, and ferrous iron oxidation by the bacteria Thiobacillus ferrooxidans. The bioreaction rates per unit volume of the reactor were up to 14 times higher than those in the equivalent airlift bioreactor. The structure of the liquid flow was determined by a tracer method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号