首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aging effects of atmospheric pressure plasma treated fiber surfaces are important for storage and processing of the fibers. One of the high-performance fibers, ultrahigh modulus polyethylene (UHMPE) fiber, was chosen as a model system to investigate the aging process of atmospheric pressure plasma jet (APPJ) treated fibers surfaces 0, 7, 15 and 30 days after initial plasma treatment. The fiber was first plasma-treated and then stored at temperatures varying from ?80 to 80°C on the same relative humidity (RH, 0%) and on RH of 0%, 65% and 100% at the same temperature of 20°C. Immediately after the plasma treatment, scanning electron microscope (SEM) showed the roughened fiber surface. X-ray photoelectron spectroscopy analysis showed changed surface chemical compositions. Contact-angle measurement showed increased surface wettability and microbond test showed an increase in IFSS. With increasing relative humidity or decreasing temperature, the IFSS value decreased and the contact angle increased more slowly. However, after 30 days, the IFSS values and contact angles reached a similar level for all groups. Moisture showed no effect on the single fiber tensile strengths during aging. The reasons for the observed aging behavior could be that decreasing temperature or increasing relative humidity hindered the surface rearrangement of polymer chains after plasma treatment.  相似文献   

2.
Ultrahigh-modulus polyethylene fibers were treated with atmospheric pressure He plasma on a capacitively coupled device at a frequency of 7.5 kHz and a He partial vapor pressure of 3.43 × 103 Pa. The fibers were treated for 0, 1, and 2 min. Microscopic analysis showed that the surfaces of the fibers treated with He plasma were etched and that the 2-min He plasma-treated group had rougher surfaces than the 1-min He plasma-treated group. XPS analysis showed a 200% increase in the oxygen content and a 200% increase in the concentration of C—O bonds (from 11.4% to 31%) and the appearance of C=O bonds (from 0% to 7.6%) on the surface of plasma-treated fibers for the 2-min He plasma-treated group. In the microbond test, the 2-min He plasma-treated group had a 100% increase of interfacial shear strength over that of the control group, while the 1-min He plasma-treated group did not show a significant difference from the control group. The 2-min He plasma-treated group also showed a 14% higher single-fiber tensile strength than the control group.  相似文献   

3.
In order to investigate the effect of atmospheric pressure plasmas on adhesion between aramid fibers and epoxy, aramid fibers were treated with atmospheric pressure helium/air for 15, 30 and 60 s on a capacitively-coupled device at a frequency of 5.0 kHz and He outlet pressure of 3.43 kPa. SEM analysis at 10 000× magnification showed no significant surface morphological change resulted from the plasma treatments. XPS analysis showed a decrease in carbon content and an increase in oxygen content. Deconvolution analysis of C1s, N1s and O1s peaks showed an increase in surface hydroxyl groups that can interact with epoxy resin. The microbond test showed that the plasma treatment for 60 s increased interfacial shear strength by 109% over that of the control (untreated). The atmospheric pressure plasma increased single fiber tensile strength by 16-26%.  相似文献   

4.
Ramie fiber/soy protein concentrate (SPC) polymer (resin) interfacial shear strength (IFSS) was measured using the microbond technique. To characterize the effect of plasticization, SPC resin was mixed with glycerin. Fibers were also treated with ethylene plasma polymer to reduce fiber surface roughness and polar nature to control the IFSS. Fiber surfaces after ethylene plasma polymerization, and fracture surfaces of specimens before and after the microbond tests were characterized using a scanning electron microscope (SEM). Some specimens were also characterized using electron microprobe analyzer (EMPA) to map the residual resin on the fiber surface after the microbond test. Effects of glycerin concentration in SPC and ethylene plasma fiber surface treatment time on the IFSS were investigated. Preparation of SPC resin requires a large amount of water. As expected, during drying of SPC resin, the microdrops shrank significantly. The high IFSS values indicate strong interfacial interaction in the ramie fiber/SPC resin system. This strong interfacial interaction is a result of a highly polar nature of both the ramie fiber and the SPC resin and rough fiber surface. Ethylene plasma polymerization was used to control the IFSS. The plasma polymer imparted a polyethylene-like, non-polar polymer coating on the fiber surface. As a result, the fiber surface became smoother compared to the untreated fiber. Both fiber smoothness and non-polar nature of the coating reduced the ramie fiber/SPC resin IFSS. Plasticization of the SPC resin by glycerin also decreased the adhesion strength of the ramie fibers with the SPC resin. The load-displacement plots for IFSS tests obtained for different resin and fiber combinations indicate different interfacial failure modes.  相似文献   

5.
Ultrahigh modulus polyethylene fibers were treated with atmospheric pressure helium + oxygen plasma in a capacitively coupled device at a frequency of 7.5 kHz. The fibers were treated for 0, 0.5, 1, 1.5, and 2 min. The surfaces of the fibers treated with He + O2 plasma were etched and micro-cracks were formed. XPS analysis showed a 65ndash213% increase in oxygen content on the surfaces of all plasma-treated fibers, except for the 1.5 min group. An increase in the concentration of C—O and the appearance of C=O bonds on the surfaces of plasma-treated fibers were observed. In the micro-bond test, He + O2 plasma-treated groups had a 65–104% increase in interfacial shear strength over that of the control. The tensile strength of the fibers was either unchanged or decreased by 10–13% by the plasma treatments.  相似文献   

6.
A nanoparticle dispersion is known to enhance the mechanical properties of a variety of polymers and resins. In this work, the effects of silica (SiO2) nanoparticle loading (0–2 wt%) and ammonia/ethylene plasma-treated fibers on the interfacial and mechanical properties of carbon fiber–epoxy composites were characterized. Single fiber composite (SFC) tests were performed to determine the fiber/resin interfacial shear strength (IFSS). Tensile tests on pure epoxy resin specimens were also performed to quantify mechanical property changes with silica content. The results indicated that up to 2% SiO2 nanoparticle loading had only a little effect on the mechanical properties. For untreated fibers, the IFSS was comparable for all epoxy resins. With ethylene/ammonia plasma treated fibers, specimens exhibited a substantial increase in IFSS by 2 to 3 times, independent of SiO2 loading. The highest IFSS value obtained was 146 MPa for plasma-treated fibers. Interaction between the fiber sizing and plasma treatment may be a critical factor in this IFSS increase. The results suggest that the fiber/epoxy interface is not affected by the incorporation of up to 2% SiO2 nanoparticles. Furthermore, the fiber surface modification through plasma treatment is an effective method to improve and control adhesion between fiber and resin.  相似文献   

7.
To improve their adhesion properties, ultra high modulus polyethylene (UHMPE) fibers were treated by an atmospheric pressure helium plasma jet (APPJ), which was operated at radio frequency (13.56 MHz). The surface properties of the fibers were investigated by X‐ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and contact angle measurement. The surface dyeability improvement after plasma treatments was investigated using laser scanning confocal microscopy (LSCM). The adhesion strengths of the fibers with epoxy were evaluated by microbond tests. In addition, the influence of operational parameters of the plasma treatment including power input and treatment temperature was studied. XPS analysis showed a significant increase in the surface oxygen content. LSCM results showed that the plasma treatments greatly increased fluorescence dye concentrations on the surface and higher diffusion rate to the fiber center. The tensile strength of UHMPE fiber either remained unchanged or decreased by 10–13.6% after plasma treatment. The contact angle exhibited a characteristic increase in wettability, due to the polar groups introduced by plasma treatment. The microbond test showed that the interfacial shear strengths (IFSS) increase significantly (57–139%) after plasma treatment for all groups and the optimum activation is obtained at 100°C and 5 W power input. SEM analysis showed roughened surfaces after the plasma treatments. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

8.
In this work the effect of atmospheric plasma treatment on carbon fiber has been studied. The carbon fibers were treated for 1, 3 and 5 min with a He/O2 dielectric barrier discharge atmospheric pressure plasma. The fiber surface morphology, surface chemical composition and interfacial shear strength between the carbon fiber and epoxy resin were investigated using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and the single fiber composite fragmentation test. Compared to untreated carbon fibers, the plasma treated fiber surfaces exhibited surface morphological and surface composition changes. The fiber surfaces were found to be roughened, the oxygen content on the fiber surfaces increased, and the interfacial shear strength (IFSS) improved after the atmospheric pressure plasma treatment. The fiber strength showed no significant changes after the plasma treatment.  相似文献   

9.
在空气相对湿度为5%,65%和95%的条件下,应用氦气/氧气常压等离子体处理芳纶和超高强度聚乙烯纤维,采用单纤维抽拔实验测定处理前后纤维与环氧树脂间的层间剪切强度,利用原子力显微镜和X射线光电子能谱仪分析等离子体处理前后纤维表面形态和化学成分的变化.结果表明:等离子体处理纤维随着处理环境湿度的增加,水分促进了芳纶表面的...  相似文献   

10.
Friction between chemically-modified tips and surfaces has been studied with chemical force microscopy (CFM) to evaluate the effect of changing solid/liquid free energy on energy dissipation in sliding tip-surface contact. Well-controlled conditions were necessary to attain a single asperity contact in these experiments. We found that in a series of methanol- water mixtures the interfacial shear strength between CH3-terminated surfaces of the siloxane self-assembled monolayers (SAMs) was independent of the adhesion force. The shear strength value of 10.2 ± 1.0 MPa found for this interface under methanol-water media is consistent with the previous studies of similar systems under dry gas conditions. A comparison to available data on interfacial shear strengths demonstrated that siloxane monolayers were much more effective in reducing friction than various carbon coatings.  相似文献   

11.
常压等离子射流表面改性超高模量聚乙烯纤维   总被引:1,自引:1,他引:0  
利用常压等离子射流(APPJ)方法对超高模量聚乙烯(UHMPE)纤维进行表面改性处理。研究了处理前后UHMPE纤维的力学性能、表面形貌、化学成分、表面粘结性能的变化。结果表明,常压等离子射流处理后,UHMPE纤维的强度未发生显著变化,纤维表面粗糙度增加,表面氧元素的含量增加,表面极性基团增加,纤维与环氧树脂之间的粘结性能得到显著的改善。  相似文献   

12.
One difference between a low‐pressure plasma treatment and an atmospheric pressure plasma treatment is that in the atmosphere, the substrate material may contain significant quantities of moisture, which could potentially influence the effects of the plasma treatment. To investigate how the existence of moisture affects atmospheric pressure plasma treatment, aramid fibers (Twaron 1000) with three different moisture regains (0.5, 4.5, and 5.5%) were treated by an atmospheric pressure plasma jet for 3 s at a gas flow rate of 8 L/min, a treatment head temperature of 100°C, and a power of 10 W. The scanning electron microscopy analysis showed no observable surface morphology change for the plasma treated samples. X‐ray photoelectron spectroscopy analysis showed the oxygen contents of the 0.5 and 4.5% moisture regain groups increased from that of the control, although the opposite was true for the 5.5% moisture regain group. The advancing contact angles of the treated fibers decreased about 8°–16° whereas their receding contact angles decreased about 17°–27°. The interfacial shear strengths of the treated fibers as measured using microbond pull‐out tests were more than doubled when the moisture regain was 4.5 or 5.5%, whereas it increased by 58% when the moisture regain was 0.5%. In addition, no significant difference in single fiber tensile strength was observed among the plasma treated samples and the control sample. Therefore, we concluded that moisture regain promoted the plasma treatment effect in the improvement of the adhesion property of aramid fibers to epoxy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 242–247, 2006  相似文献   

13.
Polyethylene (PE) has many excellent material properties (low density, high flexibility, good chemical resistance, etc.), and is widely used in industrial and medical fields. However, the practical applications of PE are sometimes limited due to its poor wettability. In this article, we employ pure nitrogen atmospheric pressure plasma jet (APPJ) and N2-H2O APPJ to hydrophilize PE surfaces. Wettability, time stability, chemical composition, micromorphology, and mechanical properties of the treated surfaces are investigated by contact angle measurement, X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and electric digital display push–pull machine. The pure nitrogen APPJ can hydrophilize PE surfaces without inducing obvious microstructure changes, and relatively better wettability (water contact angle = 13°) could thereby be achieved. On the other hand, the N2-H2O APPJ creates micro/nanoscale pores on the treated hydrophilic surfaces, contributing to the better time stability and lower tensile strength. The results reported here clearly demonstrate the great potential of nitrogen APPJs with different water mixing ratios in controlling surface wettability and microstructures of polymer surfaces. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47136.  相似文献   

14.
The effect of various silane coupling agents on glass fiber surfaces has been studied in terms of the surface energetics of fibers and the mechanical interfacial properties of composites. γ-Methacryloxypropyltrimethoxysilane (MPS), γ-aminopropyltriethoxysilane (APS), and γ-glycidoxypropyltrimethoxysilane (GPS) were used for the surface treatment of glass fibers. From contact angle measurements based on the wicking rate of a test liquid, it was observed that silane treatment of glass fiber led to an increase in the surface free energy, mainly due to the increase of its specific (or polar) component. Also, for the glass fiber-reinforced unsaturated polyester matrix system, a constant linear relationship was observed in both the interlaminar shear strength (ILSS) and the critical stress intensity factor (KIC) with the specific component, γS SP, of the surface free energy. This shows that the hydrogen bonding, which is one of the specific components of the surface free energy, between the glass fibers and coupling agents plays an important role in improving the degree of adhesion at the interfaces of composites.  相似文献   

15.
To determine the effect of moisture regain of wool on atmospheric pressure plasma treatment results, wool fibers and fabrics conditioned in 100% relative humidity (RH) and 65% RH were treated by an atmospheric pressure plasma jet with pure helium and helium/oxygen mixed gas, respectively. Scanning electron microscope (SEM) indicated that scales of wool fiber were smoothened for fibers conditioned in the 100% RH. X‐ray photoelectron spectroscopy (XPS) showed that carbon content decreased substantially after the plasma treatment. Surface chemical composition of 100% RH conditioned groups changed more significantly than the 65% RH conditioned groups. Water contact angle decreased significantly after the plasma treatments. In shrinkage test, plasma‐treated wool fabrics preconditioned in 100% RH showed the lowest shrinkage ratios of 5% and 6%, below 8% is required for machine‐washable wool fabrics according to ISO standard. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
用常压等离子体射流处理不同含水率聚乙烯醇(PVA)薄膜,通过扫描电镜(SEM)观察薄膜表面形态,并用红外光谱测试仪(FTIR)、X光电子能谱(XPS)、X射线衍射仪(XRD)分析了等离子体处理前后含水率为1.85%MC及41.33%MC两种 PVA化学结构及结晶结构的变化。试验结果表明:水分可加速氦气/氧气等离子体对PVA刻蚀及氧化,其中刻蚀速率达0.68μm/min,氧含量从30.8%提高到34.8%;同时,经过处理的薄膜结晶度增加了48%。  相似文献   

17.
The effects of aging temperature and time on the adhesion properties of oxygen plasmatreated low-density polyethylene (LDPE) were investigated. As the aging temperature and time increased, surface rearrangement and the migration of molecules containing polar functional groups into the bulk were accelerated to the surface to form a hydrophobic surface. The adhesion strength of oxygen plasma-treated LDPE/aluminum joints was measured using a 90° peel test by varying the plasma treatment time and aging temperature. The adhesion strength was constant, regardless of the plasma treatment time. As the aging temperature increased, the adhesion strength of the LDPE/aluminum joints decreased and the locus of failure changed from cohesive to interfacial failure. It was also found that the polar functional groups buried in the bulk could be reoriented to the surface in a polar environment. This study also investigated whether repeated oxygen plasma treatment would increase the concentration of polar functional groups at the surface and reduce the surface rearrangement and the migration of molecules containing polar functional groups during aging. Contact angle measurements and X-ray photoelectron spectroscopy (XPS) showed that repeated oxygen plasma treatments increased the concentration of polar functional groups at the surface. However, the aging time between plasma treatments had a negligible effect on the concentration of polar functional groups at the surface.  相似文献   

18.
Alumina-13 wt% titania wear resistant coatings were deposited using the Atmospheric Plasma Spray (APS) process under several processing conditions. Coating adhesion was then measured locally on cross sections by the indentation test and results were correlated with process variables. In order to identify the most influential factors on adhesion, artificial intelligence was used. The analysis was based on an Artificial Neural Network (ANN) taking into account training and test procedures to predict the dependences of measured property on experimental conditions. This study pointed out primarily that adhesion was largely sensitive to parameters that modified the in-flight particle characteristics (i.e. velocity and temperature). These effects were quantitatively demonstrated and predicted with an optimized neural network structure.  相似文献   

19.
20.
In order to investigate hydrophilic recovery of hydrophobic treatment of cellulose fibers, ramie fibers are ethanol-pretreated followed by atmospheric pressure plasma jet (APPJ) treatment using helium as the treatment gas and age for up to 150?days in 20?°C and 65% relative humidity. Scanning electron microscopy shows the fiber surfaces of the ethanol-pretreated?+?APPJ-treated group of freshly prepared, aged for 30?days, and aged for 150?days are covered with polypropylene matrix after fiber pullout tests. X-ray photoelectron spectroscopy shows that the freshly prepared ethanol-pretreated?+?APPJ-treated group has a 31% reduction in atomic ratio of oxygen to carbon and maintains at a similar level even after 150?days of aging. Water contact angle measurement demonstrates that the wettability of fiber surface of the freshly prepared ethanol-pretreated?+?APPJ-treated group drastically decreases and remains at the same lever after aging. Interfacial shear strength test reveals that the interfacial adhesion between PP matrix and ramie fiber for the freshly prepared ethanol-pretreated?+?APPJ-treated group increases 26% and remains substantially higher than that of the control group over time. These results indicate that the ethanol pretreatment followed by APPJ treatment is a permanent surface treatment with negligible aging for at least five months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号