首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
水合物添加剂在一定程度上能够解决纯水体系下水合物分离混合气存在选择性低、水合速率不高和水合物生成条件苛刻等问题,为了系统地研究十二烷基硫酸钠(SDS)及四氢呋喃(THF)对水合物分离特性的影响,采用自行设计的水合物分离实验装置,分别进行了浓度为0、100 mg/kg、300 mg/kg、500 mg/kg、1 000 mg/kg的SDS溶液及摩尔分数为0、0.5%、1.0%、3.0% 的THF溶液体系下,水合物法分离摩尔分数为59%的CO2和摩尔分数为41%的N2混合气的实验。实验结果表明:SDS能够提高水合物的生成速率及储气密度,随着SDS浓度的增大,CO2分离率与N2损失率都呈现先增大后减小的趋势,分离因子呈现先减小后增大的趋势,在初始压力为5.0 MPa、温度为1.4 ℃的情况下,SDS浓度为0~100 mg/kg时水合物分离效果较佳;THF有效地降低了水合物的相平衡压力,THF本身生成Ⅱ型水合物并占据水合物的大孔穴,CO2优先于N2占据水合物的小孔穴,当初始压力为4.8 MPa、温度为1.4 ℃时,THF摩尔分数约为1.0%时能够较好地改善水合物的分离效果。  相似文献   

2.
水合物法分离CO2与N2混合气的实验   总被引:1,自引:1,他引:0  
与传统的分离方法相比,水合物法分离气体混合物技术具有可降低制冷能耗、简化工艺流程、节省投资成本等优势,但目前该技术还不成熟,尚未形成统一的成套技术。为研究各种因素对分离效果的影响并给出一定配比混合气的最佳分离条件,以摩尔分数59% CO2+41% N2混合气为例,利用自行设计的实验装置,系统地进行了温度、初始压力及含水量对分离效果的单值影响实验。分析处理实验数据,得到混合气在温度1.4~5.6 ℃、初始压力4.2~6.8 MPa及含水量160~300 mL范围内的分离效果。实验结果显示:降低温度,升高初始压力都可以提高分离率,但同时也会增大损失率;增加含水量会提高分离率,降低损失率,但含水量超过一定值,对分离率的影响便不再明显。综合考虑,对于一定配比的CO2+N2混合气,在允许的损失率及最小气液比下,可以先增大含水量,然后降低温度,最后提高初始压力,以此来达到最佳的分离效果。  相似文献   

3.
添加剂对CO2水合物生成的影响   总被引:3,自引:0,他引:3  
以水合物的方式分离/储存CO2气体是一项具有挑战性的新技术。为了提高水合物的生成速率和储气密度,在小型可视化的水合物反应装置上实验研究了不同种类的添加剂对CO2水合物生成特性的影响。结果表明,实验用有机硅系列添加剂可以有效降低气-水界面的表面张力,提高水合物的生成速率。CO2水合物的生成量随着添加剂浓度的增大而增大,但当浓度高于0.1%以后,其生成量增长非常缓慢。单组分添加剂Silwet L-77效果最好,而单组分添加剂THF对CO2水合物的生成没有任何改善,但将浓度为4%的THF和1%的Silwet L-77混合后却对水合物的生成起到了显著的改善效果,12 h内的气体压降可达到0.27 MPa,是纯水体系的10倍之多,照片显示有大量的水合物生成。研究结果对寻找适合于CO2水合物快速生成的添加剂,为其应用于高效分离储存CO2气体技术等方面提供了指导。  相似文献   

4.
在非常规天然气以及天然气水合物二氧化碳(CO2)置换开采过程中,明确CO2/CH4混合气体水合物(以下简称“CO2/CH4水合物”)的合成和分解机理,对水合物法分离混合气体、CO2封存与CH4高效开采有重要意义。以多孔介质+去离子水体系中的CO2/CH4水合物为研究对象,进行了二次合成和分解实验,研究了分解时间为0.5 h、分解温度为5~25℃条件下的记忆效应对CH4/CO2水合物合成的影响,主要从二次合成诱导期、气体消耗量和消耗速率,以及各组分气体消耗情况3个方面进行了分析。结果表明,分解温度越低,二次合成诱导期越短;记忆效应降低了二次合成速率;当分解温度为10℃时二次合成速率最快,气体消耗速率峰值为8.10 mmol/min;在相同的合成温度和压力下,升温分解后的记忆效应使二次合成时CO2水合物合成量提高至初次合成量的1....  相似文献   

5.
采用搅拌式反应釜水合物生成实验装置研究动力学促进剂十二烷基硫酸钠(SDS)和热力学促进剂四氢呋喃(THF)对水合物法捕集CO_2的影响,用摩尔分数为25%的CO_2和75%的N_2混合气模拟烟气,分别探究不同浓度的SDS和THF对分离效果的影响;在此基础上,研究了不同初始压力、反应温度对分离效果的影响。结果表明,SDS和THF的存在都能提高CO_2回收率,但同时会降低分离因子。设定初始温度为3.5℃,初始压力为9.2 MPa时,加入质量分数为0.01%的SDS溶液后,CO_2回收率较纯水中增大了4.3%,分离因子较纯水中降低了44.8%;设定初始温度为6.5℃,初始压力为3.7 MPa时,加入摩尔分数为0.5%的THF溶液后,CO_2回收率较纯水中增大了30.4%,分离因子较纯水中降低了72.8%。在实验条件下,适宜的SDS质量分数为0.01%~0.05%,THF摩尔分数为0.5%~2%,初始压力的增加可以有效缩短水合反应的诱导时间,增大储气密度、CO_2回收率和分离因子,降低温度能有效提高分离效果。  相似文献   

6.
水合物法捕集CO2具有储气量大、生成条件温和等显著优点,应用前景广阔。提高水合物生成速率和CO2气体消耗量是该方法需解决的关键问题。在活性炭+THF溶液体系中开展了CO2水合物生成特性研究,探究了THF溶液浓度(物质的量分数,下同)、THF溶液饱和度对CO2气体消耗量的影响,并通过可视显微实验研究了活性炭+THF溶液体系中CO2水合物的生长形貌特征。研究结果表明,相比于THF溶液浓度为5.56%的体系,活性炭+THF溶液体系(THF溶液浓度为5.56%、溶液饱和度为100%)的CO2气体消耗量增加了59%;当THF溶液饱和度为100%时,提高THF溶液浓度可以有效促进水合物生长,在THF溶液浓度为5.56%的条件下,CO2气体消耗量达到总CO2气体消耗量90%所需的时间(t90)最短(106.67 min)。活性炭+THF溶液体系中的CO2水合反应由气体吸附和水合物生长两个阶段组成,水合物最...  相似文献   

7.
CO2置换法开发不同体系CH4水合物的实验   总被引:2,自引:1,他引:1  
CO2置换法引起了许多研究者的注意,该方法能够使CH4水合物开发和CO2气体的长期储存同时进行,是一种开发CH4水合物的新方法。在自行设计的反应装置中考察了3.25 MPa压力下,温度271.2 K、273.2 K和276.0 K时CO2气体置换十二烷基硫酸钠(SDS)体系和纯水体系CH4水合物中CH4的置换过程。实验表明:提高温度有利于置换反应的进行;SDS体系的置换速率比纯水体系的置换速率高。276.0 K、3.25 MPa时,SDS体系和纯水体系100 h的置换效率分别达到6.93% 和14.50%。由于水合物相中静态水的存在,置换反应过程中,CO2的消耗量与CH4水合物的分解量并不是1∶1的关系。基于实验结果,简单地分析了CO2置换CH4水合物中CH4的置换机理。  相似文献   

8.
CO2驱采油举升过程中,随着压力的降低,采出液会析出大量伴生气,伴生气中CO2含量高达50%~90%,相比CH4气体,气态CO2节流致冷效应更强,引起的低温可能会生成水合物堵塞管道,威胁集输系统的运行安全。采用高压蓝宝石反应釜研究了CO2含量对CO2-CH4气体节流及水合物生成特性的影响。结果表明:当初始压力为高压(16 MPa)时,相同CO2占比的混合气体,节流效应系数Di约为1.3~5.4℃/MPa,CH4的掺入将增强混合气体节流效应,说明高压段主要受CH4节流效应的影响;当初始压力为低压(5 MPa、4 MPa)时,节流效应系数Di约为3.4~11.9℃/MPa,CH4的掺入将减弱混合气体节流效应,说明低压段主要受气相CO2节流效应的影响;相同CO2含量的CO2-CH...  相似文献   

9.
活性炭的微孔结构对其选择性吸附CH4/N2混合气中CH4的影响   总被引:1,自引:0,他引:1  
活性炭因其具有较高的选择吸附性和吸附容量已被广泛应用于CH4/N2的吸附分离研究,影响活性炭选择吸附性和吸附容量的主要物理参数之一是其微孔结构,准确地表征活性炭的微孔结构并阐明其与活性炭选择性吸附CH4/N2混合气中CH4的内在联系至关重要。为此,结合常温气体吸附法和分子探针技术,采用吸液驱气法表征了6种活性炭的微孔孔径分布,结合动态法测量得到CH4/N2分离因子,并借此分析了活性炭的微孔结构对其选择性吸附CH4/N2混合气中CH4的影响。结果表明:①与77 K条件下N2吸附法测试结果相比,吸液驱气法能够测量到活性炭中更小尺寸的孔;②活性炭样品微孔孔径分布不同,其CH4/N2分离因子也不相同;③活性炭孔径小于0.48 nm的微孔对其选择性吸附混合气CH4/N2中的CH4起着非常重要的作用。结论认为,吸液驱气法可为研发吸附分离CH4/N2的吸附剂提供更为准确的基础数据。  相似文献   

10.
利用PVT装置开展了不同CO2 含量下CO2 —烃—水体系在不同条件下气水互溶特性实验,研究气藏注CO2 封存过程中CO2 —烃—水体系互溶规律。结果表明,相同温度压力下,随CO2 的不断注入,气相中CO2 含量和水蒸汽含量不断增加,液相中CO2  在水中的溶解度越大,CH4 溶解度越小,地层条件下CO 含量为68%物质的量的气样比CO2 含量为23%物质的量的气样的CO2 溶解度增加1.116%物质的量,而CH4 的溶解度减小0.13% 物质的量。CO2 和CH4 在水中的溶解度均随压力升高而增大,随温度升高而减小;在CO2  临界点附近,CO2 在水中的溶解度变化显著,40℃下CO2 含量为23%物质的量的气样的CO2 溶解度6~9MPa增加了0.138% 物质的量,而9—12 MPa仅增加0.092% 物质的量,且压力越大增加量越小。高温低压时受水蒸发作用影响,气相中CO2  及CH4 含量随温度升高急剧降低,随压力升高缓慢上升,当压力高18MPa后,气相中CO2及CH4 含量基本保持不变。  相似文献   

11.
Carbon dioxide (CO2) emission from different systems such as fuel gas (H2+CO2), flue gas (N2+CO2), and biogas gas (CH4+CO2) is one of the main factors of global warming and environmental problems. So, CO2 separation from different systems is essential. Low energy consumption, environmental friendliness, and low operational cost of hydrate-based gas separation (HBGS) process show the high potential of this approach in separation of some gases such as CO2. Hydrate phase equilibrium data are required for designing the separation process. So far numerous models has been proposed for prediction of hydrate formation/dissociation conditions in various systems with/without promoters or inhibitors. This study attempts to present a simple and comprehensive model for fast prediction of hydrate formation conditions to separate CO2 from biogas, fuel gas, and flue gas systems in the presence of promoters such as tetra-n-butylammonium bromide, tetra-n-butylammonium chloride, tetra-n-butylammonium fluoride, tetra-n-butyl ammonium nitrate, and tetra-n-butylphosphonium bromide. According to the error analysis results, this point can reach the new proposed correlation has better estimation capability in comparison with Sayyad Amin et al. model. On the other hand, hydrate formation temperature can be predicted in the presented correlation with high accuracy.  相似文献   

12.
Separation of the (C1 + C2) hydrocarbon system is of importance in natural gas processing and ethylene production. However it is the bottleneck because of its high refrigeration energy consumption, and needs to be urgently addressed. The technology of separating gas mixtures by forming hydrate could be used to separate (C1 + C2) gas mixtures at around 0 °C and has attracted increasing attention worldwide. In this paper, investigation of vapor-hydrate two-phase equilibrium was carried out for (C1 + C2) systems with and without tetrahydrofuran (THF). The compositions of vapor and hydrate phases under phase equilibrium were studied with model algorithm when structure I and structure II hydrates coexisted for the (methane + ethane) system. The average deviation between the modeled and actual mole fractions of ethane in hydrate and vapor phases was 0.55%, and that of ethylene was 5.7% when THF was not added. The average deviation of the mole fraction of ethane in vapor phase was 11.46% and ethylene was 7.38% when THF was added. The test results showed that the proposed algorithm is practicable.  相似文献   

13.
目的 某天然气净化厂已完成过程气羰基硫(COS)水解的改造工作,解决了商品气中总硫含量超标的问题,但商品气中二氧化碳(CO2)摩尔分数过低(约0.25%),严重制约了商品气产率的有效提升,探究合适的增产措施可实现企业的降本增效。方法 利用HYSYS流程模拟软件构建了该净化厂两级吸收塔模型,分析了吸收塔塔板数、溶液循环量及脱硫剂组成对天然气净化的影响规律,重点研究了对商品气中CO2摩尔分数的影响规律。结果 (1)在不调整脱硫剂组成的前提下,减少两级吸收塔共5块塔板,同时,贫液和半富液循环量降至操作下限,商品气中硫化氢(H2S)质量浓度不会超标,且CO2摩尔分数可提升至0.87%;(2)在调整脱硫剂组成的前提下,减少两级吸收塔共5块塔板,同时,贫液和半富液循环量降至下限值运行,商品气中H2S质量浓度仍不会超标,且CO2摩尔分数可提升至2.47%。结论 对吸收塔模拟及增产措施的研究可指导该天然气净化厂的技改,提高商品气产率,为同类型大型高含硫天然气净化厂的技改优...  相似文献   

14.
The natural gas in Changshen gas reservoir has high CO2 content. There are no conventional methods to calculate the physical parameters of natural gas. In view of this specificity, the physical parameters are determined and analyzed by PVT laboratory experiments. Experimental studies show that, below 20 MPa, the compressibility factor, volume factor, density, and isothermal compressibility have strong sensitivity to pressure, but the steam content contributes little and the absolute viscosity maintains strong pressure sensitivity. The compressibility factor, density, absolute viscosity, and steam content increase violently stronger than volume factor with the increase of CO2, and the isothermal compressibility is not sensitive to CO2. The variations of the high-pressure physical properties of Changshen gas reservoir depend on pressure and CO2 content, which should be considered in the reservoir development.  相似文献   

15.
富含CO2天然气净化技术面临天然气气质和尾气排放标准的双重挑战,故在综述国内外富含CO2天然气脱除CO2技术现状的基础上,分析了现有净化技术存在的问题,即活化甲基二乙醇胺(aMDEA)法CO2吸收剂循环量大、装置能耗高,变压吸附法和膜分离集成法工艺不成熟等。进而提出了活化剂、工艺流程及其操作参数优化、变压吸附和膜分离集成技术等新的研究方向,以期形成适用于富含CO2天然气净化的系列配套技术,助推我国富含CO2天然气的高效开发。  相似文献   

16.
目前,常规天然气深度脱碳工艺能耗大,具体表现在再生塔温度高、重沸器热负荷过大、工艺流程换热简单、换热网络集成度小、热量损失多等方面。研究了一种分流解吸工艺,该工艺中物料分两股进入再生塔,回收再生塔塔顶气相热量,减少塔顶冷却器的冷却水用量,从而减少重沸器热负荷,达到一定的节能效果。结果表明,分流解吸工艺比常规工艺节能,当原料气中CO2摩尔分数为3.63%时,最佳分流比为0.3,此时净化效果最好;当原料气中CO2摩尔分数为20%时,最佳分流比为0.4,此时净化效果最好。第2股选择进料位置时,建议选取中部偏上两块塔板(第8块)作为最佳进料位置。  相似文献   

17.
To appropriate design and satisfactory performance of utilities in the gas processing and transmission plants, a crucial factor that should be taken in consideration is the natural gas water content. The present research aimed to develop a precise strategy for estimating sour gas/sweet gas water content ratio. This developed predictive tool is based on adaptive neuro-fuzzy inference system (ANFIS). In this regard, a comprehensive data bank that contains 1,126 data points was collected. This model predicts ratio of sour gas to sweet gas as function of pressure, temperature, and equilibrium H2S mole fraction. The ranges of pressure and temperature were 200–70000 KPa and 10–150°C, respectively. In addition, the equilibrium H2S mole fraction ranges between 0.076 and 0.492. Results obtained from the ANFIS model confirmed acceptable and reasonable predictive capability of this model. This tool is simple to use and can be help petroleum engineers to predict water content of natural gas at broad ranges of conditions.  相似文献   

18.
Termodynamic data on methane hydrate formation in the presence of ammonia are very important for upgrading of ammonia synthesis vent gas using hydrate formation. This paper is focused on the formation conditions of methane hydrate in the presence of ammonia and the effects of gas-liquid ratio and temperature on the separation of vent gas by hydrate formation. Equilibrium data for methane hydrate within an ammonia mole concentration range from 1% to 5 % were obtained. The experimental results indicated that ammonia has an inhibitive effect on hydrate formation. The higher the ammonia concentration, the higher is the pressure reguired for methane hydrate formation would be. The primary experimental results showed that when volume ratio of gas to liquid was 80:1 and temperature was 283.15 K, total mole fraction of (H2+N2) in gas phase could reach 96.9 %.  相似文献   

19.
天然气超音速旋流脱水装置设计及凝结特性分析   总被引:1,自引:1,他引:0  
天然气中含有的水蒸气往往会导致单位体积气体发热量降低,减少输送管道的流通面积,其中的CO_2和H_2S溶于液态水后还会腐蚀管路。针对实际开采过程中的高压天然气含水问题,结合流体力学和工程热力学原理,设计了1套前置式超音速天然气旋流脱水装置。基于国内外研究现状,建立了超音速旋流天然气凝结流动的数值模型,包括多组分两相膨胀流动模型和水蒸气凝结模型。对超音速旋流天然气脱水装置各个工作段的流动特性进行了数值研究,得出装置内部压力、温度、马赫数、水蒸气内部成核率、湿度的分布规律,并根据数值模拟结果对超音速旋流天然气脱水装置进行了优化设计。  相似文献   

20.
A mathematical simulation of the gas hydrate formation based on a gas mixture approximated to natural gas composition – CH4+H2S?+?CO2+Xe at a normalized increase in hydrogen sulfide (H2S) concentration in gas mixture from 3.08·10?4?vol.% to 4.88?vol.%, at changes in the gas hydrate formation temperatures from 273.15?K to 283.15?K. It is shown that xenon (Xe) distribution coefficient decreases from 12.37 to 5.90, and is more dependent on the change in H2S concentration than on the change in the gas hydrate formation temperature. Effective Xe recovery from natural gas at the gas hydrate formation temperature is 273.15?K, and at a minimum impurity concentration with a dissociation pressure close to Xe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号