首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction in water of Cu(NO(3))(2)·2.5H(2)O with 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), or 1,10-phenanthroline-5-amine (phenam), and sodium pyrophosphate (Na(4)P(2)O(7)), at various pHs, afforded three new copper(II)-pyrophosphate complexes, namely, {[Cu(bipy)(cis-H(2)P(2)O(7))](2)}·3H(2)O (1a), {[Cu(phen)(H(2)O)](4)(HP(2)O(7))(2)}(ClO(4))(2)·4H(2)O (2), and {[Cu(2)(phenam)(2)(P(2)O(7))](2)·25H(2)O}(n) (3). A solvent free crystalline phase of 1a was also isolated with formula {[Cu(bipy)(trans-H(2)P(2)O(7))](2)} (1b), which can be regarded as a pseudo-polymorph of 1a. Single crystal X-ray analyses revealed these compounds to have uncommon molecular architectures, with 3 being an unprecedented pyrophosphate-containing two-dimensional (2D) polymer. Compounds 1a/1b and 2 are discrete di- and tetra-nuclear complexes, respectively. The cationic {[Cu(phen)(H(2)O)](4)(HP(2)O(7))(2)}(2+) unit in 2 presents a unique quasi-flat structure, held together by solely in-plane pyrophosphate bridging modes (short O(eq)-P-O(eq) and long O(eq)-P-O-P-O(eq) pathways), a coordination arrangement also not previously reported. A different tetranuclear copper(II)-pyrophosphate arrangement is found in 3, with two classically bridged dimers (O(eq)-P-O(eq) pathway) joined together by auxiliary equatorial-axial μ-O pyrophosphate bridges. Here, the bidimensionality is reached through bridging phenam ligands, which provide further inter-"tetramer" metal-metal connections [(N,N')(eq)-(N')(ax) pathway], leading to the formation of an expanded covalent network based on the [Cu(2)(phenam)(2)(P(2)O(7))](2) moiety. Variable-temperature magnetic susceptibility measurements on polycrystalline samples of 2 and 3 revealed net antiferromagnetic coupling between metal centers with J(2a) = -7.9(2) cm(-1), J(2b) = -46.9(3) cm(-1), J(2c) = 0 cm(-1) in 2 (H = -J(2a)[S(Cu(1))·S(Cu(2)) + S(Cu(1a))·S(Cu(2a))] - J(2b)[S(Cu(1))·S(Cu(2a)) + S(Cu(1a))·S(Cu(2))] - J(2c)S(Cu(2))·S(Cu(2a))), and J(3a) = -87.9(2) cm(-1), J(3b) = -5(1) cm(-1) and J(3c) = +5(3) cm(-1) in 3 (H = -J(3a)[S(Cu(1))·S(Cu(2)) + S(Cu(1a))·S(Cu(2a))] - J(3b)[S(Cu(1))·S(Cu(2a)) + S(Cu(1a))·S(Cu(2))] - J(3c)S(Cu(2))·S(Cu(2a))). For 1a, a net ferromagnetic coupling is observed with J(1a) = +0.86(1) cm(-1) (H = -J S(A)·S(B) + S(A)·D· S(B) + βH (g(A)S(A) + g(B)S(B)). This is the first example of ferromagnetic coupling in pyrophosphate-complexes reported to date. A structure-function correlation study focusing on magnetic exchange across the observed diverse pyrophosphate-bridges is described with density functional theory (DFT) calculations included to support the stated observations.  相似文献   

2.
Tridentate Schiff-base carboxylate-containing ligands, derived from the condensation of 2-imidazolecarboxaldehyde with the amino acids beta-alanine (H2L1) and 2-aminobenzoic acid (H2L5) and the condensation of 2-pyridinecarboxaldehyde with beta-alanine (HL2), D,L-3-aminobutyric acid (HL3), and 4-aminobutyric acid (HL4), react with copper(II) perchlorate to give rise to the helical-chain complexes [[Cu(mu-HL1)(H2O)](ClO4)]n (1), [[Cu(mu-L2)(H2O)](ClO4).2H2O]n (2), and [[Cu(mu-L3)(H2O)](ClO4).2H2O]n (3), the tetranuclear complex [[Cu(mu-L4)(H2O)](ClO4)]4 (4), and the mononuclear complex [Cu(HL5)(H2O)](ClO4).1/2H2O (5). The reaction of copper(II) chloride with H2L1 leads not to a syn-anti carboxylate-bridged compound but to the chloride-bridged dinuclear complex [Cu(HL1)(mu-Cl)]2 (6). The structures of these complexes have been solved by X-ray crystallography. In complexes 1-4, roughly square-pyramidal copper(II) ions are sequentially bridged by syn-anti carboxylate groups. Copper(II) ions exhibit CuN2O3 coordination environments with the three donor atoms of the ligand and one oxygen atom belonging to the carboxylate group of an adjacent molecule occupying the basal positions and an oxygen atom (from a water molecule in the case of compounds 1-3 and from a perchlorate anion in 4) coordinated in the apical position. Therefore, carboxylate groups are mutually cis oriented and each syn-anti carboxylate group bridges two copper(II) ions in basal-basal positions with Cu...Cu distances ranging from 4.541 A for 4 to 5.186 A for 2. In complex 5, the water molecule occupies an equatorial position in the distorted octahedral environment of the copper(II) ion and the Cu-O carboxylate distances in axial positions are very large (>2.78 A). Therefore, this complex can be considered as mononuclear. Complex 6 exhibits a dinuclear parallel planar structure with Ci symmetry. Copper(II) ions display a square-pyramidal coordination geometry (tau = 0.06) for the N2OCl2 donor set, where the basal coordination sites are occupied by one of the bridging chlorine atoms and the three donor atoms of the tridentate ligand and the apical site is occupied by the remaining bridging chlorine atom. Magnetic susceptibility measurements indicate that complexes 1-4 exhibit weak ferromagnetic interactions whereas a weak antiferromagnetic coupling has been established for 6. The magnetic behavior can be satisfactorily explained on the basis of the structural data for these and related complexes.  相似文献   

3.
The new triply-bridged dinuclear copper(II) complexes, [Cu2(μ-O2CH)(μ-OH)2(dpyam)2](ClO4) · H2O (1), [Cu2(μ-O2CCH3)(μ-OH)(μ-OH2)(dpyam)2](S2O8) (2), [Cu2(μ-O2CCH3)(μ-OH)(μ-OH2)(bpy)2](NO3)2 (3), [Cu2(μ-O2CCH3)(μ-OH)(μ-OH2)(phen)2](BF4)2 · 0.5H2O (4), [Cu2(μ-O2CCH2CH3)(μ-OH)(μ-OH2)(phen)2](NO3)2 (5) and [Cu2(μ-O2CCH3)(μ-OH)(μ-Cl)(bpy)2]Cl · 8.5H2O (6) (dpyam = di-2-pyridylamine, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline), have been synthesized and characterized crystallographically and also their spectroscopic and magnetic properties have been studied. A structural classification of this type of dimers, based on the data obtained from X-ray diffraction analysis in the present work and those reported in the literature has been performed. In these complexes, the local geometry around the copper centre is generally a distorted square pyramid and distorted trigonal bipyramid with different degrees of distortion. The global geometry of the dinuclear complexes can be described in terms of the relative arrangement of the two five-coordinate environments, giving rise to different classes (A–F) of complexes. The most logical explanations have been provided for each class describing different magnetic interactions. Practically, there is a clear correlation between structural data and J values of the class B complexes. Extended Hückel calculations were performed for the present complexes 16, as well as for some other class B complexes, showing the different molecular orbitals involved in their corresponding frontier orbitals, together with their energy. The results are found to be useful for the proper interpretation and correlation of the magnetic data and the dinuclear structure of the present complexes.  相似文献   

4.
A coordination polymer of formula [Cu(μ 1,3-N3)2(imH)2] n (1) has been synthesized by reaction of Cu(NO3)2 with imidazole and sodium azide in CH3OH/CH3CN. The complex was characterized by FTIR, elemental analysis, powder diffraction, thermogravimetric analysis, magnetic measurements, and single-crystal X-ray diffraction. The X-ray crystal structure shows that the Cu(II) centers have a distorted octahedral coordination geometry, being coordinated by two imidazole ligands at the trans positions. Each azide links two [Cu(imH)2]2+ units to form 1D zigzag chains. Variable-temperature magnetic susceptibility studies at low field reveal dominant intrachain ferromagnetic/antiferromagnetic interactions. Using a model with n = 10, the coupling parameters J AF = ?2.95 and J F = 17.99 with g = 2.12 have been determined.  相似文献   

5.
6.
Self-assembly of metalloligand [CuL](-)(H(3)L =N-5-bromosalicylaldehydeglycyl-l-tyrosine) with Sr(2+) and Na(+) results in a 1D micro(2)-carboxylate- and H(2)O-bridged heterotrimetallic chiral coordination polymer [[Na(CuL)(3)Sr(H(2)O)(3)].9H(2)O]](n), which exhibits weak ferromagnetic exchange interactions and optical activity.  相似文献   

7.
The origin of a ferromagnetic interaction between Cu2+ ions in the Cu2+–DNA system which reported by Tanaka et al. is examined by using DFT calculations. In order to consider effects of an entanglement and a dis-entanglement of the double helix chain, three types of structural disorders i.e. distance, rotation angle and discrepancy in XY-plane, are considered in the model dimer structure. All calculated results show that Jab values are weak anti-ferromagnetic couplings. Boltzmann distribution simulation indicates that the high spin (HS) species exist 21% at 1.5 K by thermal excitation within the model structure.  相似文献   

8.
The magnetic and other physical properties between Cu2+ ions coordinated by salen–base pairs (Cu2+–DNA) are examined by using DFT calculations. In order to consider effects of entanglement and dis-entanglement of the double helix chain, three types of structural disorders i.e. distance, rotation angle and discrepancy in XY-plane, are changed in the model dimer structure. All calculated results show that Jab values are weak anti-ferromagnetic couplings. It is also found that the Jab values strongly depend on the salen structure.  相似文献   

9.
Reaction of 2 equiv. amount of copper(II) nitrate hexahydrate with 1 equiv. of 5-methyl-1-pyridin-2-yl-1H-pyrazole-3-carboxylic acid (PyPzCA) in presence of triethyl amine base afforded a 1D coordination polymeric compound [Cu2(PyPzCA)2(H2O)3(NO3)]NO3·H2O (1). Whereas, the same reaction when repeated with 1-(4,6-dimethyl-pyrimidin-2-yl)-5-methyl-1H-pyrazole-3-carboxylic acid (PymPzCA) instead of PyPzCA, a mononuclear compound [Cu(PymPzCA)]·2H2O·NEt3 (2) is formed. Both the complexes are crystallographically characterized. In 1, both the copper atoms (Cu1 and Cu2) have distorted square pyramidal geometry with N2O3 chromophore while, in 2, the central copper atom has a distorted trigonal bipyramidal geometry with N4O chromophore. Complex 1, is a 1D coordination polymer where the metal centers being far apart and are involved in a weak ferromagnetic interaction which is quite unexpected.  相似文献   

10.
Backbone-rigidified oligo(m-phenylene ethynylenes) fold into crescent or helical conformations in non-polar organic solvents.  相似文献   

11.
12.
The coordination behavior of Cu(II) and VO2+ towards some oximes has been investigated. The isolated complexes were characterized by elemental analysis, molar conductance, magnetic moment, spectra (electronic, IR, ESR and mass) and thermal measurements. The IR spectra showed most ligands are deprotonated during complex formation acting as mononegative bi- or tridentate, binegative tetradentate and neutral tridentate. The magnetic moments and electronic spectra showed octahedral, square pyramidal and square-planar structures for the Cu(II) and VO2+ complexes. The ESR spectra of the complexes are quite similar and exhibit axial symmetric g-tensor parameters with g > g > 2.0023 and confirmed the structures. The TG curves showed decomposition steps and indicate stability of the complexes. The ligands can remove Cu(II) ions from water by flotation technology using oleic acid surfactant with high efficiency.  相似文献   

13.
The extension of Robson-type ligands from dinucleating based on 2,6-diformylphenol to trinucleating based on 2,7-diformyl-1,8-naphthalenediol is demonstrated by the synthesis, structural and magnetic characterization of the first trinuclear Cu(II) complex using a 1,8-naphthalenediol derived ligand.  相似文献   

14.
Two N-pyrenylacetamide-substituted sugar-aza-crown ethers have been synthesized as new fluorescent chemosensors. The designed ligands 1 and 2 exhibit fluorescence characteristics of a pyrene monomer and a dynamic excimer emission when compared to N-pyrenylacetamide as a model compound. Both ligands displayed a Cu2+-sensitive fluorescence quenching with a 1:1 stoichiometry and high stability constants (log K = 6.7 for 1 and 7.8 for 2). The quenching effect was rationalized on the basis of photoinduced electron transfer from the excited pyrene to the complexed Cu2+ cation, while the changes in excimer-to-monomer ratio were explained by a conformational analysis through DFT calculations. The predicted structure suggests that the Cu2+ cation is coordinated with the two carbonyl groups and the sugar-aza-crown ethers which rigidified the complex structure and placed the two pyrene moieties far apart.  相似文献   

15.
A novel dodecanuclear complex, [{(HL)(L)(DMF)Cu(II)Gd(III)(DMF)(H(2)O)}(6)]·6DMF (1; DMF = N,N-dimethylformamide), has been obtained using the ligand resulting from the condensation of 3-formylsalicylic acid with hydroxylamine (H(3)L). The exchange interaction between the phenoxo-bridged Cu(II) and Gd(III) ions is weak ferromagnetic (J = +1.01 cm(-1)). The combination of a high-spin ground state with small anisotropy leads to a significant magnetocaloric effect [-ΔS(m)(0-7 T) = 23.5 J K g(-1) K(-1) at ~2 K].  相似文献   

16.
The reaction of copper(II) hydroxide with 2,2'-bipyridine (bipy) (1 : 1) in alkaline aqueous solution (pH 14) at room temperature affords the alternating carbonate/hydroxo-bridged copper(II) polymeric chain compound {[Cu3(bipy)3(mu-OH)2(mu-CO3)2].11H2O}n, 1, as determined by single-crystal X-ray diffraction. The structure of 1 is built up from two similar centro-symmetric dinuclear [(bipy)Cu(mu-OH)]2 cores which link together via bridging carbonate groups to mononuclear [(bipy)Cu] fragments to form the chain. Interdigitation of adjacent chains through pi-pi interactions, which involve each bipy ligand, forms sheets that are separated by the water molecules of crystallisation. Variable-temperature magnetic susceptibility measurements have shown that 1 behaves as an isolated spin doublet with two non-interacting spin triplets with the magnetic coupling through the bis-mu-hydroxo bridges being strongly ferromagnetic in nature. The hydrothermal reaction of copper(II) hydroxide, bipy and ammonium hydrogenphosphate (pH 8) yields a dinuclear copper(II) complex of formula {[Cu2(bipy)2(mu-OH)2(HPO4)(H2O)].4H2O}, 2, as determined by single-crystal X-ray diffraction. The structure of consists of an asymmetric dinuclear bis-mu-hydroxo copper(II) core with a monodentate hydrogenphosphate dianion coordinating to one copper(II) atom (above) and a water molecule to the other (below). Intra- and inter-molecular hydrogen bond interactions involving the hydrogenphosphate, water molecules and bis-mu-hydroxo groups link adjacent dinuclear fragments into chains, which interdigitate to form sheets that are separated by the water molecules of crystallisation. The investigation of the magnetic properties of 2 showed that the strength of the ferromagnetic interaction through the bis-mu-hydroxo bridges is influenced by the significant out-of-plane displacement of the hydrogen atom of the hydroxo groups, brought about through hydrogen bonding to the hydrogenphosphate ligand, and yielded the strongest ferromagnetic coupling yet reported for the bis-mu-hydroxo copper(II) core.  相似文献   

17.
A novel one-dimensional ladder-like Cu-Ba compound ([Ba(H2O)3(CuL)2] x 2H2O)n (H3L = Glycylglycine, N-[1-(2-hydroxyphenyl)propylidene]), has been synthesized and structurally characterized; it exhibits ferromagnetic interaction.  相似文献   

18.
Six new pyrazine-modulated N,N'-bis(alpha-pyridyl)-2,6-diaminopyridine ligands (PMN5) were synthesized and their complexes studied. Reaction of copper(II) with the ligand that contained one pyrazine ring in its terminal position led to formation of a one-dimensional zigzag complex whereas copper(II) reactions with ligands containing three pyrazine rings or one pyrazine ring in its middle position yielded straight one-dimensional complexes. A 2-D complex was produced from the ligand with two pyrazine rings at both terminals. When nickel(II) was introduced, a 3-D network was obtained from the three-pyrazine-modulated ligand. Researches on variable-temperature magnetic susceptibility measurements revealed excellent Heisenberg chains with weak antiferromagnetic interaction of J values from -2 to -3 cm(-1)viasigma and pi pathways in straight one-dimensional complexes between the Cu(II) centers separated by 6.8-6.9 A. The zigzag one-dimensional complex showed very poor magnetic coupling. The two-dimensional compound showed significant ferromagnetic interaction in spite of the Cu-Cu distance of 7.2 A. Ferromagnetic coupling was discussed and attributed to the unusual coordination mode of in-plane and out-of-plane linkage of bridging pyrazine rings. The three-dimensional heterometal Cu(II)-Ni(II) compound showed weak antiferromagnetic interaction, which was satisfactorily fitted with J=-2.4 cm(-1) following a one-dimensional theoretical model including MFA.  相似文献   

19.
The removal of Cu(II), Zn(II) and Ni(II) from solutions using biosorption in cork powder is described. The adsorption isotherms were determined, along with the effect of different variables, such as the solid–liquid ratio, temperature and pH on the removal efficiency of the metals. The potentiometric titration curve of the cork biomass was determined and some zeta-potential studies were carried out. The effect of the pre-treatment by Fisher esterification on the biosorption properties of cork is also presented. It was concluded that the adsorption of the heavy metals was favoured by an increase in pH. The degree of heavy metal removal is directly related to the concentration of cork biomass, and the maximum sorption capacity of cork biomass for Cu(II), Zn(II) and Ni(II) was 0.63, 0.76 and 0.34 meq./g, respectively. It is shown that ion exchange plays a more important role in the sorption of Cu(II) and Ni(II) on cork biomass than in the sorption of Zn(II). The pre-treatment by Fisher esterification confirmed the important role of the carboxylic groups in binding of Cu(II) and Ni(II) and showed that they are the only binding sites for Zn(II).  相似文献   

20.
In the presence of ammonia, the reactions of cyanamide and Cu(II) ions with different organic blocking ligands afford three hydrogencyanamido bridged dinuclear complexes: [(dmbpy)(4)Cu(2)(HNCN)](ClO(4))(3)·H(2)O (1, dmbpy = 4,4'-dimethyl-2,2'-bipyridine), [(phen)(4)Cu(2)(HNCN)](ClO(4))(3)·2H(2)O (2, phen = 1,10-phenanthroline) and [(bpy)(2)Cu(2)(HNCN)(2)(ClO(4))(2)] (3, bpy = 2,2'-bipyridine), respectively. However, using the di(2-pyridyl)ketone (dpk) ligand in similar experimental conditions, an interesting reaction between the hydrogencyanamido anion and dpk is observed. Using Cu(ClO(4))·6H(2)O or Co(ClO(4))·6H(2)O as the metal source, it gives the mixed bridged hexanuclear complex [(dpk·OMe)(4)(dpk·NCN)(2)Cu(6)(H(2)O)(2)](ClO(4))(4) (4), or the mononuclear complex [(dpk·OMe)(dpk·HNCN)Co](ClO(4))·2H(2)O (5), respectively. Their structures are characterized by single crystal X-ray diffraction analyses. Magnetic measurements reveal moderate antiferromagnetic interaction between the Cu(II) ions in complex 1, weak ferromagnetic coupling in complex 2, and strong antiferromagnetic interactions for complexes 3 and 4. The magnetostructural correlations of these complexes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号