首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Driving forces of in-plane chain orientation of polyimides (PIs) and their precursors were discussed and the mechanisms were proposed. A polyimide precursor, poly(amic acid) (PAA) derived from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) with p-phenylenediamine (PDA) showed a certain degree of in-plane orientation in its solution-casting process and clear molecular weight dependence. The results allowed us to propose the casting-induced in-plane orientation mechanism of the rigid PAA chains. The imidization-induced in-plane orientation mechanism was also discussed by investigating how residual solvent content influences the degree of in-plane orientation of resultant PI films. The results suggested that the magnitudes of the PI chain in-plane orientation are dominated by a combined effect of the initial PAA orientation, apparent stretching based on a great thickness decrease, and the molecular mobility during thermal imidization. In a system derived from s-BPDA with 2,2′-bis(trifluoromethyl)benzidine (TFMB), the effect of molecular mobility during thermal imidization was predominant when cured under usual thermal conditions owing to the presence of the trifluoromethyl groups contributing to weakened intermolecular interaction. In s-BPDA/TFMB and s-BPDA/m-TOL systems (m-TOL = m-tolidine), a melt-induced in-plane orientation phenomenon was observed at temperatures corresponding to their Tg’s when the extents of in-plane chain orientation (f values) were monitored as a function of temperature in the stepwise heating process. This behavior is very curious because there are no appreciable dimensional, morphological, and structural changes as some driving forces just above the Tg of s-BPDA/TFMB.  相似文献   

2.
The anisotropy of the thermal expansion of polyimide films was investigated . Out-of-plane or thickness direction coefficients of linear thermal expansion (CTE) were calculated from the difference between the coefficient of volumetric expansion (CVE) and the sum of the in-plane or film direction coefficients of linear thermal expansion for commercial and spin-coated PMDA//ODA and BPDA//PPD films and spin coated BTDA//ODA/MPD films. The CVEs were obtained from a pressure-volume-temperature (PVT) technique based on Bridgeman bellows. The CVE was shown to be essentially constant, independent of molecular orientation and thickness. A decrease in the in-plane CTEs therefore occurs at the expense of an increase in the out-of-plane CTE. In all cases the calculated out-of-plane CTE was higher than the measured in-plane CTE. The ratio of the out-of-plane CTE to the in-plane CTE was 1.2, 3.8, and 49.3 for the spin-coated BTDA//ODA/MPD, PMDA//ODA, and BPDA//PPD films, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Six poly(amic acid) (PAA) systems based on pyromellitic dianhydride (PMDA) formed some ordered structures with optical anisotropies clearly detectable on an optical polarizing microscope (POM) in N-methyl-2-pyrrolidone (NMP) at room temperature at high solute concentrations (15-25 wt.%) with complete sol-gel transition reversibility, whereas PAA systems based on 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) with a variety of diamine components showed no optical anisotropy in solution. However, a fluorescence probe technique combined with solution viscosity measurements suggested that a PAA derived s-BPDA with 1,4-phenylenediamine (PDA), i.e., PAA(s-BPDA/PDA) forms some ordered structure with a POM-undetectable very local scale during prolonged storage in NMP at room temperature. The introduction of the biphenyldiimide (BPDI) units at 33% into the PAA(s-BPDA/PDA) main chains by copolymerization allowed the formation of optically anisotropic gels with a smectic liquid crystal-like ordered structure by cooling the NMP solution at −20 °C. PI films derived from s-BPDA with PDA, i.e., PI(s-BPDA/PDA) were prepared upon thermal imidization of the BPDI-containing PAA films dried at 40 °C for 2.5 h. An increase in the BPDI content caused a gradual decrease in the linear coefficient of thermal expansion (CTE) of the PI films. This can be interpreted as a result of an intensified pre-orientation at the stage of the PAA cast films by incorporation of the BPDI units. When the BPDI-containing PAA solutions were heated at 70 °C for 4 min prior to the drying process at 40 °C, the ordered structures can be cancelled without imidization, and the CTE values of the resulting PI films appreciably increased compared to the case without heating at 70 °C. A similar effect was observed even in the BPDI-free original s-BPDA/PDA system. The results suggest the presence of a POM-undetectable very locally ordered structure in the PAA cast films, which promotes the pre-orientation of the PAA chains in the cast films and consequently can contribute to a further decrease in the CTE of the PI(s-BPDA/PDA) films.  相似文献   

4.
This work presents novel colorless polyimides (PIs) derived from 1R,2S,4S,5R‐cyclohexanetetracarboxylic dianhydride (H″‐PMDA). Isomer effects were also discussed by comparing with PI systems derived from conventional hydrogenated pyromellitic dianhydride, that is, 1S,2R,4S,5R‐cyclohexanetetracarboxylic dianhydride (H‐PMDA). H″‐PMDA was much more reactive with various diamines than H‐PMDA, and the former led to PI precursors with much higher molecular weights. The results can be explained from the quite different steric structures of these isomers. The thermally imidized H″‐PMDA‐based films were colorless regardless of diamines because of inhibited charge‐transfer interaction. In particular, the H″‐PMDA/4,4′‐oxydianiline system simultaneously achieved a very high Tg exceeding 300 °C, high toughness (elongation at break > 70%), and good solution processability. In contrast, the H‐PMDA‐based counterparts were essentially insoluble. The outstanding solubility of the former probably results from disturbed chain stacking by its nonplanar steric structure. An advantage of chemical imidization process is also proposed. In some cases, a copolymerization approach with an aromatic tetracarboxylic dianhydride was effective to improve the thermal expansion property. The results suggest that the H″‐PMDA‐based PI systems can be promising candidates for novel high‐temperature plastic substrate materials in electronic paper displays. A potential application as optical compensation film materials in liquid crystal displays (LCD) is also proposed in this work. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
A fluorinated tetracarboxylic dianhydride (amide-type TA-TFMB) was prepared from trimellitic anhydride chloride and 2,2′-bis(trifluoromethyl)benzidine (TFMB). A chemically imidized polyimide (PI) derived from TA-TFMB and TFMB was rather soluble in various solvents. Solution casting of this PI (TA-TFMB/TFMB) led to a flexible, non-turbid, and seemingly almost colorless PI film with a high Tg of 328 °C and a considerably low coefficient of thermal expansion (CTE) of 9.9 ppm K−1 which results from significant in-plane chain orientation induced during solution casting. The self-orientation mechanism is discussed. The properties of TA-TFMB/TFMB were compared with those of some relevant systems. The results suggest that an electron-withdrawing effect of the 2,2′-CF3 substituents of TA-TFMB and a twisted conformation of the central biphenyl moiety greatly contribute to the suppressed coloration of the TA-TFMB/TFMB film. The use of a TA-TFMB counterpart (ester-type TA-TFBP) was effective for further enhancing the transparency owing to reduced charge-transfer interaction. However, the thermal properties of TA-TFBP/TFMB were not always satisfactory. Copolymerization using 2,3,6,7-naphthalenetetracarboxylic dianhydride led to a PI film with an increased Tg of 277 °C and a very low CTE of 12.6 ppm K−1 without significant decreases in the transparency and the solubility. Thus, this work proposes promising candidates as novel heat-resistant plastic substrate materials in display devices.  相似文献   

6.
Perylenetetracarboxydiimide (PEDI) molecularly dispersed in polyamic acid (PAA) and polyimide (PI) films has unique fluorescence properties. An originally strong fluorescence of PEDI is efficiently quenched in the PAA films. The systematic variation of the chain structure of the PAA matrices revealed that the aromatic amide groups in the PAA chains function as a quencher. When a PAA derived from 3,4,3′4′-biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PDA), BPDA/PDA, was used as a matrix polymer, the fluorescence of the dye dispersed in the film increased abruptly as imidization of the matrix proceeds. But annealing at temperatures higher than 320°C in the step-heating process caused a gradual decrease in the fluorescence intensity. The decreased intensity results from the dye–PDA units interactions intensified by the denser molecular packing of the matrix polymer chains. PEDI shows significant dependence of the fluorescence intensity on the chain structure of the PI matrices. In the various PI films containing a fixed diamine component, the dye fluorescence intensity reduces linearly with an increase in the intramolecular charge transfer ability of the PI matrices. From the result, we propose a fluorescence quenching mechanism through multistep electron transfer processes. The BPDA/PDA polyimide matrix leads to a strong PEDI fluorescence whereas the pyromellitic dianhydride (PMDA)-based PI matrices do not. For the blends composed of these PIs, the fluorescence of PEDI bound into the main chains provides a valuable indicator of the miscibility on the molecular level. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 827–840, 1998  相似文献   

7.
The effect of film thickness on in-plane molecular orientation and stress in polyimide films prepared from pyromellitic dianhydride with 4,4′-oxydianline was investigated using a prism coupling technique to measure the refractive index. Film thickness was controlled by varying both solution concentration and spinning conditions. Birefringence, the difference between the in-plane and out-of-plane refractive indices, was used to characterize the in-plane molecular orientation. The observed birefringence is a combination of the birefringence resulting from molecular orientation and the birefringence induced by the residual stress present in the films. The birefringence decreases with increasing film thickness over the range of thicknesses studied (3–20 μm) indicating that the molecular orientation decreases with increasing film thickness. The in-plane coefficient of linear thermal expansion (CTE), controlled by the level of orientation in the film, increases from 18 to 32 × 10?6/°C over the same thickness range. The birefringence of free-standing films was lower than that of adhered films due to the release of residual stress in the film once the film is removed from the substrate. The residual film stress arises primarily from the mismatch in CTEs between the polyimide film and the substrate to which the film is adhered. Thus, since the film anisotropy decreases with increasing thickness, the film stress increases with increasing thickness. Residual stress calculated by integrating the product of the film modulus and the CTE mismatch assuming temperature-dependent properties is comparable to experimentally measured film stress. Ignoring the temperature dependence of the film properties leads to an overestimation of stress. Moisture uptake was used to study the stress dependence of the optical properties. Moisture uptake increases both the in-plane and out-of-plane refractive indices by equal amounts in free-standing films due to an isotropic increase in the polarizability. In adhered films, an increase in moisture uptake leads to a decrease in the birefringence due to a swelling-induced decrease in the residual film stress. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
A variety of poly(ester imide)s (PEsIs) were prepared using bis(4-aminophenyl)terephthalate (BPTP) and substituted BPTP (BPTP series) for applications to novel base film materials in flexible printed circuit boards (FPC). BPTP series were all highly reactive with various tetracarboxylic dianhydrides and led to considerably high molecular weights of PEsI precursors. The thermally imidized BPTP-based PEsI films achieved lower extents of water absorption (WA) than the corresponding 4-aminophenyl-4′-aminobenzoate (APAB)-based PEsI systems while keeping other target properties, in particular, the linear coefficient of thermal expansion (CTE) much lower than that of copper foil as a conductive layer in FPC. The lower WA is attributed to the decreased imide contents in the structure by using BPTP. The considerably low CTE can be explained in terms of intimate stacking between the p-aromatic ester fragments with an extended conformation. The BPTP-based PEsI system also exhibited a considerably low dissipation factor (tan δ = 1.91 × 10−3) at a high-frequency electric field of 18.3 GHz, comparable to a liquid-crystalline polyester. An effect of substituents on the film properties was also investigated in this work. Incorporation of methyl substituents on BPTP was very effective for property improvement, whereas methoxy substituents on BPTP, as well as methyl substituents onto hydroquinone bis(trimellitate anhydride) (TAHQ), showed a trend to significantly increase the CTE. Copolymerization with an adequate amount of a typically flexible monomer, 4,4′-oxydianiline (4,4′-ODA), allowed the CTE matching with copper foil and the film toughness improvement at the same time. The PEsI copolymer prepared from TAHQ (10 mmol) with methyl-substituted BPTP (7 mmol) and 4,4′-ODA (3 mmol) achieved excellent combined properties, namely, a very high Tg at 410 °C, a slightly lower CTE (10.0 ppm/K) than that of copper foil, suppressed water absorption (0.35%), an extremely low linear coefficient of humidity expansion (CHE = 3.4 ppm/RH%), and good film toughness (the elongation at break, εb = 50.7%). Thus, BPTP- and methyl-substituted BPTP-based PEsI systems can be promising candidates as a next generation of FPC base film materials.  相似文献   

9.
To tolerate high processing temperature during the fabrication of low-temperature polycrystalline silicon thin-film transistors (LTPS–TFT) in flexible OLED devices, the polyimide (PI) films, which are used as substrate, should have ultra-high glass transition temperature (Tg > 450°C) and ultra-low coefficient of thermal expansion (CTE at 0–5 ppm K−1). In this paper, two novel heterocyclic monomers, namely, N,N'-(xanthone-2,7-diyl)bis(4-aminobenzamide) (p-DAXBA) and N,N'-(xanthone-2,7-diyl)bis(3-aminobenzamide) (m-DAXBA), which contain a xanthone moiety, are prepared and polycondensed with pyromellitic dianhydride (PMDA), respectively. PI films (PIa and PIb) with intrinsic high Tg and low CTE are designed from the perspective of rigid conjugate xanthone structure and hydrogen bonding interaction. It is found that the PIa films prepared by p-DAXBA have better linear structure of molecular chains and show relatively higher Tg and lower CTE. The Tg of PIa-40 is greater than 450°C, and CTE can reach as low as 2.7 ppm K−1, tensile strength of 179 MPa, modulus of 5.67 GPa, indicating potential application prospect as a flexible OLED substrate.  相似文献   

10.
High strength electrospun polymer nanofibers made from BPDA-PDA polyimide   总被引:1,自引:0,他引:1  
A series of high molecular weight PI precursors, poly(p-phenylene biphenyltetracarboxamide acid), were synthesized from 3,4,3′,4′-biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PDA) by using intense mechanical stirring at −15 to 0 °C for 48-72 h. The as-synthesized PI precursor solution was used to make BPDA/PDA polyimide thin films and electrospun nanofibers. IR, Ostward Viscometer, CMT-8102 Electromechanical Universal Testing Machine and scanning electron microscope (SEM) were used for the characterizations of the as-synthesized PI precursor, PI films and nanofiber sheets. The high molecular weight BPDA/PDA PI thin films and electrospun nanofiber sheets possess excellent mechanical properties of up to 900 MPa tensile strength with up to 18.0 GPa E-modulus and up to 210 MPa tensile strength with up to 2.5 GPa E-modulus, respectively.  相似文献   

11.
Three novel diamines, incorporating benzimidazole and amide moieties, namely 4-amino-N-(5-amino-benzimidazol-2-yl)-benzamide (6a), 4-amino-N-(5-amino-1- methyl-benzimidazol-2-yl)-benzamide (6b), and 4-amino-N-(5-amino-1-phenyl -benzimidazol-2-yl)-benzamide (6c), were designed and synthesized. A series of poly(benzimidazole-amide-imide) (PBIAI) films were prepared from the resulting diamines and 4,4-biphthalic dianhydride (BPDA). These flexible polyimides (PIs) showed high glass transition temperatures (Tg = 353–379°C), low coefficients of thermal expansion (CTE = 3.7–12.3 ppm K−1) and good mechanical properties (σ = 152–207 MPa and E = 4.5–7.7 GPa), promising candidates for applications in flexible-display substrates. Furthermore, the data guided a feasible method to enhance Tg and reduce CTE by introducing benzimidazole and amide units into PI main chains, and the effect of different N-substituents on performance was revealed.  相似文献   

12.
Polyimide films with thicknesses ranging from 6 μm to 80 μm were prepared with a solvent casting method to explore film thickness effects on the in-plane thermal expansion coefficient (CTE). In the case of polyimide films composed of bulky and flexible molecular units, CTE is consistent regardless of film thickness. In contrast, films with rigid and planar molecular structure show CTE increase according to the increase of film thickness up to 40–50 μm, which then plateau for thicker films. It is apparent that the film thickness dependent thermal expansion originates from complex effects of molecular orientation, charge transfer complex formation, and crystal formation as a function of film thicknesses, through characterization on UV–Vis absorption, crystalline structure, glass transition behavior, and optical retardation. These results provide insight into the design of polymer structures for flexible display substrates that require appropriate CTE values.  相似文献   

13.
聚酰亚胺(PI)薄膜作为柔性有机发光显示(OLED)基板材料应用时, 需要满足玻璃化转变温度(Tg)大于450 ℃和热膨胀系数(CTE)在0~5×10-6 K-1之间. 为了提高PI薄膜的热性能, 本文合成了2,7-占吨酮二胺 (2,7-DAX), 并将其与均苯四甲酸二酐(PMDA)和2-(4-氨基苯基)-5-氨基苯并噁唑(BOA)共聚制备了一系列新型PI薄膜. 研究了PI薄膜的聚集态结构、 耐热性能、 尺寸稳定性和力学性能. 结果表明, 占吨酮结构和苯并噁唑结构提高了PI分子链的刚性与线性, 使分子链在平面内紧密堆积与取向, 制备的PI薄膜综合性能优异, 玻璃化转变温度高于408 ℃, CTE在-5.0×10-6~8.1×10-6 K-1之间, 拉伸强度大于140 MPa, 拉伸模量大于4.2 GPa, 断裂伸长率为7.1%~20%, 5%热失重分解温度(T5%)在601~624 ℃之间. 其中, PI-50和PI-60薄膜具有超高玻璃化转变温度和超低热膨胀系数, Tg高于450 ℃, CTE分别为2.1×10-6 K-1和1.6×10-6 K-1. 制备的系列PI薄膜作为柔性OLED基板材料有潜在应用前景.  相似文献   

14.
A series of ammonium salts of poly(amide acid)s (PAS) were prepared from various poly(amide acid)s (PAA) with tertiary amines. The solubility of poly(amide acid) ammonium salts prepared from PAA(PMDA/ODA) in water is related to the ion concentration of tertiary amines. In order to elucidate the influence of the chemical structures of poly(amide acid)s and poly(amide acid) ammonium salts on their absorption spectra, pyromellitic dianhydride (PMDA), 3,3′,4,4 ′-biphenyltetracarboxylic dianhydride (BPDA), and 3,3′,4,4 ′-benzophenonetetracarboxylic dianhydride (BTDA) were chosen to react with p-phenylenediamine (PDA) and (4,4′-diaminodicyclohexyl)methane (DCHM) to give three kinds of aromatic PAAs and three kinds of alicyclic PAAs. The corresponding PASs were prepared by the reaction of PAAs with triethanolamine (TEA). Their ultraviolet–visible (UV–vis) absorption spectra were investigated compared to those of model compounds. A transparent film without absorption above 320 nm was obtained for PAS(PMDA/DCHM). The difference in absorption spectra of PAS(PMDA/PDA) from that of PAS(PMDA/DCHM) can be related to the existence of intra- and intermolecular charge transfer (CT) for PAS(PMDA/PDA). The absorption spectra of PASs with PDA in films are red shifted compared to those of corresponding PAAs in films, while the absorption spectra of PASs in water are blue shifted compared to those of corresponding PAAs in DMF. No differences in the absorption spectra of PAAs and PASs were found in DMF/H2O (9/1) mixed solvent. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1329–1340, 1998  相似文献   

15.
Copolyimide thin film, which has low‐level stress and stress relaxation induced by water sorption, was characterized for potential applications as an encapsulant, a stress‐relief buffer, and in interlayer dielectrics. The polyimides examined were poly(p‐phenylene pyromellitimide) (PMDA‐PDA) and poly(p‐phenylene biphenyltetracarboximide) (BPDA‐PDA) as well as their random copolyimides with various compositions. These copolyimide films exhibited good combinations of physical and mechanical properties with low thermal expansion coefficients, residual stress, and moisture‐induced stress–relaxation behavior by appropriately selecting the ratios of the dianhydride component. For these polyimides, the residual stress increased in the range of −8.1–7.5 MPa, whereas stress relaxation induced by water uptake decreased in the range of 10.3–4.7 MPa with increasing BPDA contents, respectively. The major factor in determining the magnitude of the stress behavior induced by both the thermal mismatch and water uptake in films should be the morphological factors such as chain rigidity, chain orientation, crystallinity, and microvoids. Their morphological structures were examined by wide angle X‐ray diffraction and a prism coupler, and the thermal properties were measured using a dynamic mechanical thermal analyzer as well as thermomechanical analysis. Overall, the candidate for the low level stress buffer application from the PMDA/BPDA‐PDA copolyimide was the 30/70 (= PMDA/BPDA in molar ratio) copolyimide. This copolyimide showed no residual stress after curing at 400 °C and relatively insensitive stress relaxation to ambient humidity. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 796–810, 2001  相似文献   

16.
Partly imidized polyamic acid(PAA) has been used to prepare high performance polyimide films. The behaviors of two polyamic acids derived from pyromellitic dianhydride(PMDA)/4,4′-oxydianiline(ODA) and 3,3′,4,4′-biphenyltetracarboxylic diahhydride(BPDA)/paraphenylenediamine(PPD) containing dehydrating agents composed of acetic anhydride and a tertiary amine as the catalyst were investigated. The gel point was dependent on imidization degree in despite of temperature and the molar ratio of catalyst to acetic acid. Imdization content was about 35% for PMDA/ODA and about 22% for BPDA/PPD. The effect of catalyst on imidization possessed an order of triethylamine>3-methylpyridine>pyridine>isoquinoline>2-methylpyridine. The stretching of the films greatly reduced the coefficient of linear thermal expansion(CTE) either in the longitudinal direction or transversal direction. Compared to the film from polyamic acid, the partly imidized film had greater stretching ratio, so that the uniaxial stretched polyimide film from partly imidized PAA had higher tensile strength and tensile modulus, but lower elongation in the stretching direction.  相似文献   

17.
A novel diamine, 1H,1′H-(2,2′-bibenzimidazole)-5,5′-diamine (DPABZ), containing bisbenzimidazole unit was successfully synthesized, and used to prepare a series of copolyimides BPDA:(ODAm/DPABZn) by polycondensation with 4,4-diaminodiphenyl ether (ODA) and 4,4-biphthalic anhydride (BPDA). For comparison, a series of copolyimides BPDA:(ODAm/PABZn) based on another benzimidazole diamine 5-amino-2-(4-aminobenzene)-benzimidazole (PABZ) was also prepared. As a result, with the increase of PABZ or DPABZ content, the heat resistance (Tg and Td) and mechanical properties (σ and E) of the resulting polyimide (PI) films increased, while the coefficient of thermal expansion (CTE) decreased. Overall, the DPABZ-based PIs showed higher Tg values and much lower CTE values than PABZ. As the content of PABZ increased, the water absorption of PABZ-based PIs increased obviously, but no significant change in DPABZ-based PIs. The intramolecular hydrogen bonding in DPABZ-based PIs caused by the diamine DPABZ was believed to be the reason for the aforementioned differences. The BPDA: DPABZ film with low-water adsorption of 2.1%, high-Tg value of 436°C and low-CTE value of 5.4 ppm/°C could be a promising new generation of flexible display substrates.  相似文献   

18.
A series of diamines with a side chain containing rigid biphenyl unit and nonpolar alkoxy side end group [4-alkoxy-biphenol-3′,5′-diaminobenzoate] (Cm-BBDA, m = 4, 6, 12) were synthesized and their chemical structures were confirmed by Fourier Transform Infrared Spectroscopy (FT-IR) and nuclear magetic resonance spectroscopy (1H NMR). Then three polyimides (PIs) were prepared by copolymerization of pyromellitic dianhydride (PMDA), 4,4′-methylenedianiline (MDA) and Cm-BBDA in N-methyl-2-pyrrolodone (NMP), and chemical structures of all PIs were confirmed by FT-IR. Structural identification of all poly(amic acid)s (PAA) was performed by 1H NMR. Liquid crystal (LC) cells were fabricated using these PIs as the alignment layer for characterization of the alignment properties of LCs. It was found that the planar alignment was obtained when PI with side chain containing alkoxy side end group of 4 carbon atoms was employed and the vertical alignment was observed when alkoxy side end groups of 6 or 12 carbon atoms were included. A uniform vertical alignment was validated by polarizing microscopy. It was testified that LC vertical alignment possessed high thermal stability.  相似文献   

19.
Asymmetric biphenyl type polyimides (PI) derived from 2,3,3′,4′‐biphenyltetracarboxylic dianhydride (a‐BPDA) and p‐phenylenediamine (PDA) or 4,4′‐oxydianiline (ODA) show higher Tgs, and much better thermoplasticity than the corresponding isomeric PIs from symmetric 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA). In addition, a‐BPDA‐derived PIs are completely amorphous owing to their bent chain structures and highly distorted conformations, whereas the PIs from s‐BPDA are semicrystalline. a‐BPDA‐derived PIs possessing these properties or the a‐BPDA monomer were used as a flexible blend component or a comonomer to improve the insufficient thermoplasticity of semirigid s‐BPDA/PDA homo polymer. The blends composed of s‐BPDA/PDA (80%) with a‐BPDA‐derived PIs (20%), as well as the s‐BPDA/PDA‐based copolymer containing 20% a‐BPDA, showed a certain extent of thermoplasticity above the Tgs without causing a decrease in Tg. In addition, these blends and copolymer provided comparatively low thermal expansion coefficient (ca. 18 ppm). The improved film properties for the blends are related to good blend miscibility. On the other hand, when s‐BPDA/ODA was used as a flexible matrix polymer instead of a‐BPDA‐derived PIs, the 80/20 blend film annealed at 400°C exhibited no prominent softening at the Tg. This result arises from annealing‐induced crystallization of the flexible s‐BPDA/ODA component. Thus, these results revealed that a‐BPDA‐derived PIs are promising candidates as matrix polymers for semirigid s‐BPDA/PDA for the present purpose. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2499–2511, 1999  相似文献   

20.
Tensile properties of the polyimide and copolyimide films based on two dianhydrides, pyromellitic dianhydride (PMDA) and 3,3,4,4-benzophenonetetracarboxylic dianhydride (BTDA) and two diamines, 4,4-oxydianiline (ODA), and a proprietary aromatic diamine (PD) have been described. The tensile strength of the films containing higher proportions of BTDA or PMDA and PD is much higher (except the fully rigid film based on PMDA-PD which is brittle in nature) than the films containing higher proportion of ODA moiety. The films containing PD as the diamine moiety exhibit high initial moduli than the films containing exclusively or mainly ODA as the diamine moiety. The films having higher concentration of the -O- linkage originated from diamine ODA are found to exhibit higher elongation values. There is found to be no direct correlation between ηinh of the precursor casting solutions and mechanical properties of structurally different polyimide/copolyimide films. For a particular polyimide or copolyimide film, the tensile strength value is found to be less sensitive than the elongation to the variation of ηinh value of the precursor poly(amic acid) or copoly(amic acid). Tensile strength and elongation of the film, basically rigid in nature, may be improved by post-curing at 360°C/370°C. While Kapton H film retains 78% and 63.5% of its tensile strength and % elongation at break (% Eb) respectively after hot-wet mechanical test, the film based on BTDA 80, PMDA 20 and PD shows an increase of about 27% and 22% in its tensile strength and % Eb respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号