首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 54 毫秒
1.
利用中分辨率成像光谱仪(MODIS)的气溶胶产品研究云南省气溶胶光学厚度(AOT)的时空变化特征。研究结果表明:在长时间尺度上,区域月平均AOT没有明显的增长趋势,年平均值大约为0.19,反映了人为活动排放进入大气的气溶胶没有明显的增加;月平均AOT的变化呈双峰分布特征,2个峰值分别出现在3、8月,AOT大约为0.35±0.08和0.31±0.05,5月出现明显的谷值(0.20±0.03),AOT减少的原因可能是该地区降水增多,大量的降水可以清除大气中的气溶胶粒子,最小值常出现在1月或12月,AOT大约为0.09±0.02。在空间上,云南省AOT普遍较低,年平均值的空间分布为0~0.4,低值区出现在西北部的迪庆州、怒江州和丽江市;AOT高值区分布在云南省的南部和东北部地区,3月AOT值最大可达0.80以上,南部和北部差值达到0.60以上,8月AOT的高值区主要出现在中部的玉溪市红河州北部、玉溪市和昆明市。云南省AOT北高南低分布格局的原因主要是北部地区人为气溶胶排放较少,另外,由于地形的影响,北部地区风速较大,气溶胶停留在大气中的时间较短,AOT较小。  相似文献   

2.
基于MODIS的华东地区气溶胶光学厚度时空变化特征分析   总被引:1,自引:0,他引:1  
选用2001年1月-2015年12月MODIS数据,运用线性趋势等方法研究华东地区气溶胶光学厚度(AOD)的变化特征及影响因素。结果表明,2001-2015年华东地区AOD平均值变化范围在0.4~0.7之间,且呈现递减趋势。山东省西部、安徽省北部及江苏省AOD相对较高;福建省、浙江省南部及江西省南部地区AOD较低。华东地区气溶胶最低值出现在12月,最高值出现在6月;虽然冬季AOD变化趋势增长较高,但最高值仍出现在夏季。AOD主要受地形、NDVI、风速及人类活动等因素的影响,地形、NDVI、风速均与AOD呈负相关。  相似文献   

3.
利用PWD22能见度仪监测数据,分析了上海市2008年—2009年能见度日变化规律和四季逐日变化特征,以及能见度和混合层高度(MLH,Mixed Layer Height)、空气污染指数(API)及气象要素(相对湿度、风速、温度)的相关性。结果表明,能见度一峰一谷日变化特征明显,峰值出现在14:00~16:00,谷值出现在6:00~8:00。能见度与MLH相关性显著,与温度最差。能见度和气溶胶光学厚度(AOT)线性拟合呈负相关关系,且夏季相关性最显著,冬季最差。  相似文献   

4.
以长三角为研究区域,从数据采样密度、实测数据和空间分布等方面探讨空间插值方法插补气溶胶光学厚度(AOD)的适用性。研究结果表明,随着采样密度降低,AOD空间插值结果与原始影像的拟合优度R2呈幂函数递增,拐点在5%附近,自然邻域插值法表现最好;插值后卫星AOD有效数据天数比例提高到约70%,相关系数R>0.8,年均值由0.48升高到0.66,从西北往东南逐渐减低。标准差由0.27升高到0.38,从北往南逐渐降低;有效数据天数比例随降水量由南到北递减呈现相反递增趋势,水面和山地有效数据天数比例低。数据采样密度为5%时,插值结果与原始影像的空间自相关、标准差和均值的相关系数分别为0.74、0.73和0.69。  相似文献   

5.
利用2000—2019年TERRA和AQUA相结合的气溶胶光学厚度(AOD)产品数据,从时间和空间角度分析了常州市AOD的变化特征。结果显示:(1)2012—2019年常州市PM2.5与AOD年均值的相关系数为0.898,表明AOD产品适用于常州市气溶胶污染年际变化研究。(2)2000—2019年常州市AOD年均值范围为0.463~0.688,平均值为0.627。其中,2000—2007年常州市AOD年均值整体呈上升趋势,2011—2019年呈下降趋势。常州市AOD的月变化趋势呈倒“U”形,特征最高值出现在6月,最低值出现在12月。常州市AOD有明显的季节变化特征,夏季最高,冬季最低。(3)常州市AOD高值主要分布在西部的溧阳市金坛区,北部的新北区也存在少量高值分布。(4)通过Moran指数发现,常州市Moran指数均大于零,表明各年份AOD均呈集聚状态。2000—2010年常州市AOD的空间集聚程度较高,2010年以后的空间集聚效应逐渐减弱。空间热点分析表明,2011—2019年常州市AOD高值集聚区域相比2000—2010年有所减少,冷点集聚区域有所增加,AO...  相似文献   

6.
利用长三角地区浦东、东滩、太湖3个测站的太阳光度计CE318地基遥感观测得到的气溶胶光学厚度(AOD)数据对风云三号气象卫星FY-3A/B MERSI反演的550 nm波长AOD进行有效性验证。结果表明,FY-3A的反演结果相关系数高于0.96,仅有20%的样本表现出较大的偏差。FY-3B的相关系数最高为0.77,均方根误差(RMSE)最大为0.35。太湖站点的相关系数比浦东大,说明MERSI的反演算法在太湖更适用。FY-3A/B MERSI反演结果总体上偏小,存在一定的系统偏差,主要由气溶胶模型的假设、设备标定、选择像素比例等原因造成。  相似文献   

7.
基于环境一号卫星的气溶胶光学厚度反演技术研究   总被引:1,自引:0,他引:1  
基于环境一号卫星(HJ-1)遥感观测数据,采用改进的暗目标算法和深蓝算法分别对暗像元、亮像元地表的气溶胶光学厚度(AOD)进行反演,并将其结果与MOD04产品对比。结果表明:二者反演的AOD空间变化特征较一致,相关系数达0.874,HJ-1星反演结果有更高的空间分辨率。当AOD值0.2时,HJ-1星反演结果可靠性较低;当AOD值在0.2~0.8之间时,HJ-1星CCD相机反演气溶胶的结果与MOD04产品最相近,二者相对误差10%;当AOD值在0.8~1.5之间时,HJ-1星反演结果相对MOD04产品显著偏高;当AOD值1.5时,HJ-1星反演结果相对MOD04产品偏低。  相似文献   

8.
灰霾期间气溶胶的污染特征   总被引:11,自引:0,他引:11  
从颗粒物的时空分布和浓度水平方面综述了灰霾期间气溶胶的污染特征,介绍了灰霾期间气溶胶中金属元素、水溶性离子、有机碳和元素碳的浓度特征,以及颗粒物与能见度的相关性研究进展。指出:灰霾天气多发生在冬季,且气溶胶中PM2.5占的比重大;气溶胶污染与地理环境、气候条件、经济发展水平等有密切关系;水溶性离子多集中在PM2.5中;能见度的下降与气溶胶特别是细颗粒物有很大关系。提出目前灰霾研究中主要存在3大问题:一是对灰霾期间气溶胶中含有的有机物类别及其对不同季节发生灰霾的贡献率仍需进一步研究;二是灰霾期间气溶胶中有机物的形成机理尚不明确;三是不同源排放的气溶胶对灰霾形成的贡献率有待探讨。建议系统地开展大气细颗粒物有害成分的鉴定、源排放颗粒物的物理化学特性、扩散过程中各种物质间的反应和转化等方面的研究,为大气污染防治法规的制定提供依据。  相似文献   

9.
将MODIS数据反演得出的气溶胶光学厚度与无锡市区实测得到的PM2.5质量浓度进行相关性分析,结果两者的直接相关性较低,相关系数为0.283 4。气溶胶光学厚度经垂直分布和湿度修正后,两者相关性显著提高,相关系数为0.565 9。虽然修正过程存在误差,相关性未达预期程度,但该方法得到的气溶胶光学厚度可作为PM2.5监测的有效补充。  相似文献   

10.
研究了大气气溶胶地基光学遥感物联网系统的设计问题.根据其应用特点从传感层、传输层、数据层、应用层这几个组成部分对系统进行了设计,并初步实现.测试表明:设计的大气气溶胶地基光学遥感物联网系统具有支持数据实时共享、无人值守运行、快速数据融合、环境参数在线显示、历史数据快速查询和分析、仪器远程管理维护等优点,可实现大气气溶胶特性的网络化和自动化观测,对研究气溶胶对环境和气候的影响具有重要应用价值.  相似文献   

11.
秸秆焚烧对北京市空气质量的影响   总被引:30,自引:8,他引:30  
用火焰原子吸收光谱法测试了北京市两个采样点 1 #站 (十三陵站 ,清洁对照点 )和 5#站 (天坛站 ,居民生活区 )1 1 0个大气颗粒物样品中的水溶性钾 ,以表征秸秆焚烧颗粒物。 1 #站水溶性钾的质量浓度年均值为 1 .2 1 μg/m3,其中以1 998年 6月份浓度 (3 .0 7μg/m3)最高 ,是 5月份 (1 .0 2μg/m3)的 3倍 ;5#站水溶性钾的质量浓度年均值为 1 .94μg/m3,6月份 (4 .2 2 μg/m3)最高 ,是 5月份 (1 .97μg/m3)的 2 .1倍。数据分析结果表明 1 998年 6月份麦收季节存在以秸秆焚烧为主的生物质燃烧现象 ,使大气颗粒物中有机碳浓度水平升高 ,并对北京市的空气质量带来负面影响  相似文献   

12.
利用全自动太阳辐射计,对深圳世界大运会主场馆附近大气特性开展了连续观测(2011-08-11-2011-09-03)。获得了大运会期间(12 d)和大运会后(11 d),气溶胶光学厚度(AOD)等参数的变化情况,并对气溶胶光学和微物理特性进行了分析。结果表明,大运会期间440 nm处的AOD平均值为0.273,大运会之后的AOD平均值为0.983,大运会期间较大运会之后AOD平均值有显著降低。粒子谱分布等气溶胶微物理特性参数的分析还表明, AOD降低主要是由于细粒子含量的减少,说明环境控制措施对于空气质量产生了较好的改进效果。  相似文献   

13.
By extending the method of Stedman (1998), daily dataof atmospheric concentrations of gravimetricPM10, black smoke (BS) and sulphate aerosol (SA)from national networks were analysed to determine thetrends in time of the contribution of different sources of particulate matter to total PM10 measured in central Edinburgh. Since BS is an indicator of combustion-related primary sources of particulate matter, the quantity obtained by subtraction of daily BS from daily PM10 is indicative of the contribution to total PM10 from other primary sources and from secondary aerosol. This PM10-BS statistic was regressed on SA, since SA is an indicator of variation in secondary aerosol source. For Edinburgh, SA is a considerably better indicator of PM10-BS during summer than winter (reflecting the much greater photochemical generation of secondary aerosol in summer) and there is evidence that the contribution of other secondary aerosol (presumably nitrate aerosol) has increased relative to SA between 1992 and 1997. The concentration of non-combustion primary particulate material (marine aerosol, suspended dust) to PM10 in Edinburgh has not changed over this period but is about twice that calculated as the U.K. national average. The increasing input to PM10 from secondary aerosol sources at regional rather than urban scale has important implications for ensuring local air quality compliance. The method should have general applicability to other locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号