首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
本文利用EOF分析方法研究了印度洋海表温度的时空分布特征。用海温和陆面气温的联合EOF分析讨论了海陆热力差异对季风的影响,并进一步讨论了海温与我国汛期降水型的关系。  相似文献   

2.
青藏高原汛期降水的时空分布特征   总被引:3,自引:1,他引:3  
根据1967~2008年青藏高原地区67个气象台站的月平均降水资料,利用线性趋势分析、EOF分解和Morlet小波变换等方法分析了青藏高原地区汛期(5~9月)降水的时空分布特征.结果表明:青藏高原汛期降水存在明显的区域性差异,EOF分解揭示出青藏高原汛期存在3种主要的空间分布型:南北反向型、全区一致型和东南-西北反向型...  相似文献   

3.
基于2012—2021年5—9月华北五省的逐日降水资料和台站地形高度数据,统计分析了华北全区及各子区域极端降水事件的降水量及其强度和频次的时空分布特征;并运用地理加权回归(GWR)模型分析得到极端降水事件的降水量、强度及频次与海拔高度之间的关系。结果表明:1)华北区域极端降水量的时间变化均呈多波动特征且区域差异性显著,太行山以西高原和以东平原降水频次多、波动明显且强度较弱,太行山南段以南平原降水频次少、变化平缓而强度明显偏强。2)极端降水量的空间分布呈现南北少、中间多的型态分布,降水量大值区分别位于燕山东南侧和太行山南段晋冀豫三省交界处;极端降水高频站点主要聚集在晋东南地区;日最大降水量超过300 mm的站点主要集中在太行山脉和燕山山脉与华北平原的过渡地带。3)华北区域38°N以北,极端降水量、降水频次、强度和日最大降水量均随海拔高度的升高而减小;38°N以南,山西南部临运地区降水量随海拔高度的升高而显著增加。由于降水频次和强度与地形均存在正相关而导致,太行山附近降水量随海拔高度的升高而减小的贡献主要在于降水强度而非降水频次。  相似文献   

4.
1960—2003年我国热带气旋降水的时空分布特征   总被引:11,自引:0,他引:11       下载免费PDF全文
利用1960—2003年登陆影响我国的热带气旋及其造成的降水资料, 对44年间登陆我国热带气旋降水时空变化特征进行统计分析。结果表明:热带气旋降水与热带气旋登陆活动相一致, 主要发生在5—11月, 其中7—9月为盛期; 热带气旋降水量以及热带气旋暴雨日数的分布是自南向北、从沿海到内陆迅速减小, 最大出现在海南和华南、东南沿海地区; 热带气旋强度越强其最大过程降水一般也就越大, 但是两者并非严格的线性关系; 1960年以来, 我国受热带气旋影响的绝大部分地区热带气旋降水呈波动下降的趋势。  相似文献   

5.
基于EOF的江西省秋季降水时空分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
基于1980—2020年秋季江西省83个气象观测站逐月降水数据,利用EOF方法分析了该地区秋季降水的时空分布特征。结果表明,江西省秋季降水场主要有4种类型,分别为全区型、北湿(干)南干(湿)型、西湿(干)东干(湿)型、中心湿(干)南北干(湿)型,累计贡献率为86.7%。1980—2020年,全区型和中心湿(干)南北干(湿)型降水呈增加趋势,而北湿(干)南干(湿)型和西湿(干)东干(湿)型降水呈下降趋势。其中全区型降水分布的年份占比75.6%,主要受大尺度大气环流的影响。北湿(干)南干(湿)型降水分布的年份占比17.1%,这是由于赣北地区受地形抬升作用,降水较多,而中南部在背风坡,降水较少,同时秋季赣北处于副热带高压边缘,且受到台风外围的影响,易发生降水,使得南北降水呈反相位变化。  相似文献   

6.
通过对1970~2006年西藏泥石流、滑坡的时空分布特征与降水条件分析,得出西藏地区泥石流、滑坡主要发生在藏东地区、喜马拉雅山南侧及沿雅鲁藏布江一线,每年6~8月是泥石流、滑坡多发时段,降水是诱发泥石流、滑坡的主要气象条件,发生泥石流、滑坡可能性与不同雨型、不同等级降水和与前期降水情况密切相关。该研究分析结论,为西藏泥石流、滑坡预警预报提供了参考依据。  相似文献   

7.
西藏泥石流、滑坡时空分布特征及其与降水条件的分析   总被引:2,自引:0,他引:2  
通过对1970~2006年西藏泥石流、滑坡的时空分布特征与降水条件分析,得出西藏地区泥石流、滑坡主要发生在藏东地区、喜马拉雅山南侧及沿雅鲁藏布江一线,每年6~8月是泥石流、滑坡多发时段,降水是诱发泥石流、滑坡的主要气象条件,发生泥石流、滑坡可能性与不同雨型、不同等级降水和与前期降水情况密切相关。该研究分析结论,为西藏泥石流、滑坡预警预报提供了参考依据。  相似文献   

8.
利用陇东黄土高原旱区2013—2020年302个区域自动气象观测站逐小时降水数据、数字高程模型数据和欧洲中期天气预报中心ERA5再分析资料等,分析短时强降水时空分布特征及其与地形、地理因子的关系,并结合2021年一次极端短时强降水事件,总结地形的影响机制。结果表明:(1)陇东黄土高原旱区短时强降水主要集中在夏季,7月日数占比(35.9%)最多、极端性最强,8月次数占比(46.9%)最多、强度最强;雨强主要分布在22.0~31.0 mm·h-1,日变化呈多峰型特征,17:00(北京时,下同)至次日00:00最为活跃,次数占比为56.8%,且强度和极端性最强。(2)短时强降水次数和小时雨量极值空间分布极不均匀,前者东南多、西北少,且随着雨强增大骤减,高发区主要集中在河谷喇叭口地形区,而掌地也是30.0 mm·h-1以上强降水高发区;后者中部小、东北与西南大,大值区主要分布在庆城东部—合水西部。(3)地理、地形因子对短时强降水次数影响显著,主要由地理位置贡献,而对极值无明显影响,地形强迫抬升并非是陇东黄土高原旱区短时强降水的主要影响机制。(4)山谷...  相似文献   

9.
利用位于九华山不同海拔高度上测站和自动气象站的气象资料,对比分析雾的时空分布特征,探讨地形的影响作用.结果表明:年平均雾日平地区为19 d,低山区为82 d,半山区为145 d,高山区为110 d,平地区雾日呈逐年增加的趋势,山区雾日呈逐年减少的趋势;平地区的雾主要出现在秋季和冬季,山区的雾多发生在春季和冬季;平地区雾日10月-次年1月出现频率较高一些,山区雾日的高值出现在3月,低值出现在7月,1-4月山区雾的发生频率明显高于平地区;平地区和低山区最易生成雾的时间在05-07时,半山区和高山区在04-08时;平地区和低山区的雾主要在08-10时消散,半山区和高山区主要在09-11时;半山区雾的平均持续时间和最长持续时间均大于其他区域,高山区雾的最短持续时间仅有0.2 h;未饱和湿空气随气流进入喇叭口后,受到上升运动的作用,气团抬升冷却,在喇叭口底部区域水汽达到饱和而形成雾;地形逆温的存在提供了稳定的层结条件,对雾的形成和维持起着重要作用;山区风场的辐合作用有利于雾的形成和维持.  相似文献   

10.
靳立亚  吴永森 《高原气象》1996,15(4):404-413
利用1959-1993年冬半年(10月一次年3月)南海高原15个台站的月平均降水量和月平均气温距平资料,采用时空综合的经验正交函数分析方法,对青南高原地区冬半年降水,气温异常的时空分布特征进行了诊断研究,得到了降水与气温异常的典型配置及其反映这些典型场的年际演变规律的时间系数,并在此基础上进一步分析了降水、气温异常的时变特征与青南高原不同区域出现较严重雪灾年份之间的关系。结果表明,青南高原地区发生  相似文献   

11.
成都地区降水时空分布变化   总被引:3,自引:0,他引:3  
分析成都地区12个气象观测站50年(1960—2009年)逐日降水资料的时空分布变化规律得出:成都地区年降水量、汛期有雨日降雨强度、最大日降水量均呈现出逐渐下降的趋势。降水量主要集中在夏季,盛夏7、8两个月降水量占全年降水总量的47%;降水空间分布的主要类型为东—西走向,即降水量的地区分布趋势是西部多于东部;对降水量的M-K突变检验表明,大部分地方存在年降水总量的突变。  相似文献   

12.
周玉都  许敏  赵玮  刘艳杰  李娜 《气象科技》2021,49(6):885-896
利用2005-2019年河北省40个国家气象观测站逐小时降水资料,分析小时降水和小时强降水的时空分布特征,结果表明:①小时降水频率近年来是降低的,而小时强降水频次没有明显的变化趋势,小时降水量、降水频率、降水强度以及小时强降水频次的月变化均呈单峰型分布,小时强降水频次呈年差异化变大趋势,使得小时强降水事件发生的极端性更...  相似文献   

13.
广西区域地面蒸发量的计算及其时空分布与演变特征分析   总被引:1,自引:0,他引:1  
利用广西区域89个测站1971~2000年温度、降水的逐日观测资料计算了广西各地的年、季、月平均蒸发量,并对年、季蒸发量的空间分布进行分析,对广西区域平均蒸发量的逐月演变进行研究。结果表明,年蒸发量的大值中心出现在桂东南地区,桂东北和桂西北则是小值区。广西区域平均月蒸发量主要是出现在夏半年(4~9月),占全年蒸发总量的70%。  相似文献   

14.
本文利用贵州省黔南州12个国家级自动气象站1989-2019年的地面降水观测资料,采用线性回归方法、Kriging法、反距离权重法、滑动t检验等方法,分析了黔南州近31年降水的时空变化规律及突变特征,主要得出以下结论:(1)黔南州年平均降水呈东西部偏多、北部和中南部偏少的“川”字型分布,降水量有明显的增加趋势;(2)季节降水高值区围绕都匀为中心南北摆动,其中春、夏、秋三个季节降水呈增多趋势,冬季呈减少趋势;(3)月降水主要集中在4-8月,其中11-4月降水为东多西少的东西向分布,5-9月为南多北少的南北向分布,10月为北多南少的南北向分布;(4)降水突变总体表现为2000年左右由减少趋势向增多趋势突变、21世纪10年代初由增多趋势向减少趋势突变。  相似文献   

15.
利用1900~2013年美国国家气候数据中心ERSSTv3b2°×2°数据,通过EOF分析、小波分析、曼-肯德尔法、累积距平法分析太平洋年代际振荡(The Pacific Decadal Oscillation,简称PDO)的时间、空间分布规律。结果表明,PDO指数存在准48年的周期变化,周期内“冷-暖”相位交替出现,1925年左右和1975年左右,由冷相位转变为暖相位;1941年左右和1995年左右,由暖相位转变为冷相位。北太平洋海温大致以40°N为轴南北对称分布,其大值区域分布从北美西海岸—墨西哥半岛向北一直延伸到阿拉斯加,小值区域出现在夏威夷群岛北侧和日本群岛东侧。PDO指数与Nino3.4指数的相关系数是0.43,是显著正相关关系。PDO指数异常年与Nino3.4指数异常年对应率平均值是51.42%。  相似文献   

16.
福州市空气质量状况时空变化及其与天气系统关系   总被引:3,自引:0,他引:3  
利用2002~2006年福州市PMlO、NO2和S02逐日资料及同期08:00 850 hPa天气图资料,采用统计学和天气气候分类方法,综合分析福州市5年来空气质量总体状况,污染物时空分布特征以及不同天气系统对污染物浓度变化的影响.结果表明:福州市空气质量状况总体良好,PMlO浓度呈逐年下降趋势,N02浓度呈逐年上升趋势,SO2浓度变化不明显;市区交通要道的N02和S02污染浓度值最高,高山站的各种污染物浓度值均低于市区.副热带高压和低压倒槽影响下福州市不会出现轻度污染事件,轻度污染出现机会超过5%的天气系统有冷槽、均压场、暖区辐合和大陆高压;暖区辐合的天气里,等级良的出现率为各类天气系统之首;低压和低压倒槽影响下,等级优的出现率高于良.  相似文献   

17.
庄妍  陈正洪  钟水新  何飞  许杨 《暴雨灾害》2023,39(4):479-487

恩施地区地形复杂,是湖北省的多雾区,其雾的空间分布差异大,但该地区气象站点稀疏,难以揭示其时空分布特征。通过分析亚洲区域中国气象局陆面数据同化系统(China Meteorological Administration Land Data Assimilation System,CLDAS)陆面同化资料以及恩施站温度露点差(T-Td)及相对湿度(RH)数据,揭示了恩施山区主要的成雾潜势指标时空分布特征。结果表明:(1) RH在90%以上,T-Td≤2.0℃有利于恩施山区雾的形成;(2)基于CLDAS资料得到的成雾潜势指标与基于恩施站及其周边的3个气象站观测得到的指标的日变化趋势均较一致且相关性较好,利用CLDAS资料描述恩施地区成雾潜势的精细化特征是可行的;(3)恩施地区RH存在显著的时空差异,空间上表现为南高北低,随海拔高度变化复杂,时间上表现为低山区昼夜变化大、中高山区昼夜变化小、夜间增湿明显;(4)基于T-Td的成雾潜势指标的频率空间分布及昼夜差与RH变化规律基本一致,其中最高频率出现在中南部的中山区(800~1 200 m),最低频率在北部地区的三峡干热河谷即巫山山脉的背风坡,一年之中冬季出现频率最高。

  相似文献   

18.
宁夏冰雹时空分布特征   总被引:5,自引:1,他引:5  
张智  林莉  冯瑞萍  杨侃 《气象科技》2008,36(5):567-569
利用宁夏20个气象站1961~2006年冰雹天气实测资料及NCEP/NCAR再分析资料,统计分析了宁夏冰雹日数的空间分布、年际变化、月际变化和持续时间等时空分布特征.分析表明:宁夏20世纪60~80年代为冰雹多发期;冰雹集中出现在4~9月;受地形和海拔高度的影响,南部山区是宁夏冰雹的多发区.90年代以后冰雹日数、同日出现冰雹的地域范围、冰雹持续时间均明显减少,大气环流的变化起着主要的作用.  相似文献   

19.
利用四川省2002—2020年降雨灾情数据和156个国家气象观测站及5727个区域气象观测站逐日、逐小时降雨资料,分析四川省降雨灾情时空分布及其与雨量特征的联系。结果表明:四川省近年来降雨灾情数量增长明显,盆地西部、南部灾情数量最多,密度最大,凉山州和盆地东北部死亡人数最多。灾害主要发生在6—9月,灾情分布有从盆地东北部、南部向西部发展,最后到东北部的趋势。盆地在有大暴雨出现时灾害发生可能性最大,致灾频率50%以上,暴雨致灾频率20%~40%;攀西地区暴雨出现时致灾频率20%~30%;川西高原暴雨天气过程较少,大雨出现时致灾频率最大,为10%~30%。最大小时雨量盆地区在10 mm以下的灾害主要发生在盆南和盆东北,盆西在各个雨量等级范围内占比都较大,攀西地区灾害主要集中在10~40 mm,川西高原为20 mm以下。最大日降雨量小于50 mm的灾害主要分布在盆南,超过300 mm的主要发生在盆西北,50~100 mm以盆南和盆西南为主,攀西地区50~100 mm占比最大,川西高原为25~50 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号