首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 65 毫秒
1.
周会会 《涂料工业》2020,50(11):16-20
采用热浸镀的方法,在镍基高温合金DZ125样品表面制备Al、AlSi和AlSiY三种不同的铝化物涂层,研究1 000℃时涂层的抗高温氧化性能。利用扫描电子显微镜(SEM)以及能谱仪(EDX)对合金涂层的形貌以及元素成分分布进行观察分析。研究结果表明:在高温环境下,Al元素快速与氧反应生成氧化铝层。由于元素之间的相互扩散,纯Al涂层中的Al元素快速消耗,导致整个涂层的快速失效。AlSi和AlSiY涂层由于Si富集层的形成,有效地阻止了元素的互扩散,提高了涂层的抗氧化性能。AlSiY涂层中Y元素的添加,Si富集层更加均匀致密,并且Y与Si、Cr、Mo电负性差值较大,更易形成稳定化合物,极大提高了涂层使用寿命。AlSiY涂层的抗高温氧化性能更优于纯Al和AlSi涂层。  相似文献   

2.
采用预置式等离子熔覆方法在45钢表面制得Ni60以及Ni60+WC复合涂层,借助扫描电镜、能谱和X-射线衍射仪研究涂层的抗高温氧化性能。结果表明,在氧化膜形成的初期,氧化速率主要由氧的内扩散所控制,在氧化膜形成的后期则以Cr3+的扩散为主;涂层氧化膜的主要成分为SiO2和Cr2O3,其中Ni60+WC涂层表面的氧化膜中还有少量尖晶石结构相NiCr2O4。涂层的抗氧化性由涂层的成分和组织共同决定,WC颗粒的加入对涂层的抗氧化性有所提高。  相似文献   

3.
热喷涂涂层的制备方法有许多。其中火焰喷涂和电弧喷涂是比较常用的方法。本文通过对镍铝火焰与电弧喷涂合金涂层的制备与性能的比较,阐述了电弧喷涂涂层结合强度,硬度,热疲劳寿命均比火焰喷涂涂层高。  相似文献   

4.
通过对镍基单晶合金和NiCrAlY涂层进行在900℃的氧化动力学曲线测定及组织形貌观察,研究了电弧离子镀NiCrAlY涂层对镍基单晶合金高温氧化行为的影响。结果表明,在高温氧化期间,镍基单晶合金发生明显的氧化、内氧化和内氮化,在表层为Al2O3、Cr2O3的混合氧化物;镍基单晶合金经电弧离子镀NiCrAlY涂层,可有效改善合金的抗氧化性能;涂层在900℃氧化动力学质量增加曲线遵循抛物线规律,其形成的Al2O3氧化膜氧化期间不发生明显的剥落。  相似文献   

5.
TiO2涂层耐蚀性能和抗高温氧化性能   总被引:1,自引:0,他引:1  
用溶胶-凝胶法在碳钢表面制备TiO2涂层。用正交设计法对水解反应温度、涂覆次数、热处理温度和时间4因素进行了优化,并考察了上述4因素对涂层在10%(体积分数)H2SO4介质中的耐蚀性能和650℃空气气氛中的抗高温氧化性能的影响。  相似文献   

6.
镍基高温合金陶瓷涂层的制备及性能表征   总被引:1,自引:0,他引:1  
以Cr2O3粉、玻璃料及黏土为原料制成料浆,通过喷涂将其涂覆在镍基高温合金GH44的表面,采用热化学反应法于1050°C保温10min,熔烧制备出高温陶瓷涂层。通过扫描电镜和X射线衍射分析了高温陶瓷涂层的表面和截面形貌以及相组成,对涂覆陶瓷涂层的镍基合金的抗热震性能、抗氧化性能以及高温疲劳性能进行了测试。结果表明,陶瓷涂层结构致密,与基体结合牢固,具有良好的抗热震性能。涂覆陶瓷涂层的镍基合金其高温抗氧化性相对于基体提高了6倍以上,其高温疲劳性能明显改善。  相似文献   

7.
采用热喷涂技术制备纳米结构涂层是构筑纳米结构材料最具前途的方法之一,本文综述了热喷涂陶瓷涂层材料的性能、制备方法及应用方面的研究现状,并对热喷涂纳米陶瓷涂层面临的问题及研究的发展趋势进行了讨论。  相似文献   

8.
采用火焰喷涂法制备了低密度聚乙烯(LDPE)涂层和LDPE/纳米二氧化硅(n-SiO2)复合涂层。利用差示扫描量热法(DSC)对涂层的非等温结晶行为进行研究,并用Jeziorny法和Mo法进行处理。结果表明,Jeziorny法和Mo法处理涂层的非等温结晶过程比较合理;Jeziorny法得到的结晶速率常数和Avrami指数均随冷却速率的增加而增加,且n-SiO2的加入使复合涂层的结晶速率常数和Avrami指数略有升高、半结晶时间降低,结晶速率增大,表明n-SiO2相似文献   

9.
将钛酸钾晶须(平均长度15μm,平均直径1.5μm)加入含25g/LNiSO4·6H2O、25g/LNaH2PO2·2H2O、15g/LCH3COONa·3H2O、35g/LNa3C6H5O7·2H2O、20mmol/L乳酸和10μg/L醋酸铅的化学镀溶液中,在Q235钢片上制备得到了Ni–P合金基中弥散分布钛酸钾晶须的金属基复合镀层。研究了该复合镀层的高温抗氧化性,分析了氧化膜的组成与结构,探讨了复合镀层的抗氧化机制。结果表明,钛酸钾晶须增加了氧化膜的致密性,复合镀层具有良好的高温抗氧化能力。  相似文献   

10.
研究了纯镍表面磁控溅射Ni-0.5Y微晶涂层在1000℃空气中的恒温氧化和循环氧化行为。通过扫描电镜(SEM)和透射电镜(TEM)对涂层以及表面NiO氧化膜的形貌和结构进行了研究。结果表明,Ni-0.5Y微晶涂层与基体镍相比有更低的氧化增重速率,表面NiO氧化膜的晶粒尺寸明显减小,膜的高温塑性得以改善。同时,氧化膜内的压应力水平也有所降低,因而改善了NiO氧化膜的粘附性和保护性。磁控溅射涂层的微晶结构以及稀土元素钇的存在均有助于提高涂层的抗高温氧化性能。  相似文献   

11.
A new type of WC-based coating with high oxidation- and wear-resistance at elevated temperature was fabricated by thermal spraying the pre-treated WC-Co powder doped with WB. Addition of WB led to in situ formation of WCoB, which acted as a substitute for Co in the powders and the resultant coatings. It was shown by thermal analysis that WCoB has obviously higher oxidation resistance at high temperatures than that of WC and Co. Thus, the oxidation of the WC-WCoB coating was mainly initiated from WC, rather than from Co in the conventional WC-Co coatings. Most of WCoB was preserved in the coating after high-temperature wear tests. Particularly, with an addition of 40 wt.% WB, the wear rates of the WC-Co coating were dramatically decreased by 90% and 77% at the room and elevated temperatures, respectively.  相似文献   

12.
《Ceramics International》2017,43(14):10848-10860
To investigate the effect of preparation methods on the La-Mo-Si (LMS) coatings, we developed a new LMS coating system using pack cementation (PC) and supersonic atmospheric plasma spraying (SAPS). Microstructure analysis showed that the SAPS-LMS coating possessed a higher porosity than that of the PC-LMS coating. Higher porosity can provide more channels to the oxidative and corrosive gasses to permeate the SAPS-LMS ceramic top-coat. After static oxidation for 150 h under 1773 K, the mass loss of SAPS-LMS coating (3.12 wt%) was much higher than that of the PC-LMS coating (0.05 wt%), and the parabolic rate constants presented faster oxidation kinetic in SAPS-LMS coating with respect to the PC-LMS coating. These results revealed that the protection effectiveness of SAPS-LMS coating was inferior to PC-LMS coating. Compared with SAPS-LMS coating, microscopic pores and cracks appeared in the PC-LMS coating with a thicker oxide film, which benefits from the formed La-Si-O-Al glass oxide with an excellent ability for crack healing. The reasons for poor antioxidant performance of SAPS-LMS coating are the higher volatility of La-Si-O glass containing Mo5Si3 and a weak interfacial interaction between coatings and substrate.  相似文献   

13.
The main goal of the current study is evaluation and comparison of thermal shock behavior of plasma-sprayed nanostructured and conventional yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs). To this end, the nanostructured and conventional YSZ coatings were deposited by atmospheric plasma spraying (APS) on NiCoCrAlY-coated Inconel 738LC substrates. The thermal shock test was administered by quenching the samples in cold water of temperature 20–25 °C from 950 °C. In order to characterize elastic modulus of plasma-sprayed coatings, the Knoop indentation method was employed. Microstructural evaluation, elemental analysis, and phase analysis were performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffractometry (XRD) respectively. The results revealed that failures of both nanostructured and conventional TBCs were due to the spallation of ceramic top coat. Thermal stresses caused by mismatch of thermal expansion coefficients between the ceramic top coat and the underlying metallic components were recognized as the major factor of TBC failure. However, the nanostructured TBC, due to bimodal unique microstructure, presented an average thermal cycling lifetime that was approximately 1.5 times higher than that of the conventional TBC.  相似文献   

14.
《Ceramics International》2023,49(3):4795-4806
Thick thermal barrier coatings (TTBCs) have been developed to increase the lifetime of hot section parts in gas turbines by increasing the thermal insulating function. The premeditated forming of segmentation cracks was found to be a valuable way for such an aim without adding a new layer. The TTBC introduced in the current study are coatings with nominal thickness ranging from 1 to 1.1 consisting of MCrAlY bond coat and 8YSZ top coat deposited by air plasma spray technique (APS). TTBCs with segmented crack densities of 0.65 mm?1 (type-A) and 1 mm?1 (type-B) were deposited on a superalloy substrate by adjusting the coating conditions. It was found that the substrate temperature has an influential role in creating the segmentation crack density. The crack density was found to increase with substrate temperature and liquid splat temperature. The two types of coatings (type-A and B) with different densities of segmentation crack were heat-treated at 1000 °C (up to 100 h) and 1100 °C (up to 500 h). The variation of hardness measured by indentation testing indicates a similar trend in both types of coatings after heat treatments at 1000 °C and 1100 °C. Weibull analysis of results demonstrates that higher preheating coating during the deposition results in a denser YSZ coating. The growth rate of TGO for TTBCs was evaluated for cyclic and isothermal oxidation routes at 1000 °C and 1100 °C. The TGO shows the parabolic trend for both two types of coatings. The Kps value for two oxidation types is between 5.84 × 10?17 m2/s and 6.81 × 10?17 m2/s. Besides, the type B coating endures a lifetime of more than 40 cycles at thermal cycling at 1000 °C.  相似文献   

15.
Oxidation studies of ZrB2 were performed under wet air and dry air conditions at 1200°C, 1400°C, and 1500°C for 1, 4, and 10 h. Compared to dry air, the presence of water vapor was found to enhance the oxidation kinetics by a factor of 7 to 30, depending on the temperature. Thermodynamic calculations suggested that water vapor promoted the formation of additional volatile species such as boric acid (HBO2), in addition to boria (B2O3) produced in dry air, which increased the evaporation rate of B2O3. Compared to dry air, the presence of water vapor leads to more rapid evaporation of boria and the transition from parabolic oxidation kinetic behavior (ie, rate controlled by diffusion through boria) to linear (ie, underlying ZrB2 is directly exposed to the oxidizing environment) at shorter times and lower temperatures.  相似文献   

16.
Thermal conductivity is a crucial parameter for evaluating the quality and thermal effects of ceramic coatings, especially for thermal barrier coatings. However, measurement by conventional method involves two problems: (a) it is difficult to peel off a ceramic coating from a substrate; (b) even if the coating can be peeled off, it is still hardly used as standard specimen in test. Therefore, the relative method was proposed to evaluate the thermal conductivity of ceramic coating. An analytical relationship among the thermal conductivities of the coating, the substrate, and the coating/substrate composite was established. Experiments on TA4 coated with YSZ coatings were carried out to demonstrate the feasibility of this novel method and to investigate the impact of temperature on the thermal conductivity of YSZ coatings. The experimental results demonstrated the validity and convenience of the relative method. With the increasing testing temperature, the thermal conductivity value of YSZ coatings displayed nonlinearity feature, that is, decreased from 1.4 to 1.3 (W m−1 K−1) in the temperature range of 32-300°C and then increased up to 1.58 W m−1 K−1 at 1000°C.  相似文献   

17.
《Ceramics International》2017,43(14):11204-11217
The effective thermal conductivity of a composite coating depends on intrinsic thermal conductivity of the constituent phases, its characteristics (size, shape) and volume fraction of porosities. The present study concerns studying the effect of CoNiCrAlY and Al2O3 content on the coefficient of thermal expansion and thermal conductivity of the YSZ (YSZ-CoNiCrAlY and YSZ-Al2O3) based composite coatings developed by thermal spray deposition technique. The coefficient of thermal expansion and thermal conductivity of the composite coatings were measured by push rod dilatometer and laser flash techniques, respectively, from room temperature to 1000 °C. Variation in density, porosity, coefficient of thermal expansion, and thermal conductivity was observed in the composite coatings with the addition of different volume fraction of CoNiCrAlY and Al2O3 powders in YSZ-CoNiCrAlY and YSZ-Al2O3 composites, respectively. Comparison between the theoretical and experimental thermal conductivities showed a mismatch varying from 4% to 58% for YSZ-CoNiCrAlY composite coatings and from 58% to 80% for YSZ-Al2O3 composite coatings. Model based analyses were used to understand the mechanism of thermal conductivity reduction in the composite coatings. It was concluded that the morphology of porosities varied with composition.  相似文献   

18.
In this work, Si3N4 and Zr(NO3)4 were used as raw materials to prepare ZrN/ZrO2-containing Si3N4-based ceramic composite. The processing, phase composition, and microstructure of the composite were investigated. Hardness and fracture toughness of the ceramics were evaluated via Vickers indentation in Ar at 25°C, 300°C, 600°C, and 900°C. During spark plasma sintering, Zr(NO3)4 was transformed into tetragonal ZrO2, which further reacted with Si3N4, resulting in the formation of ZrN. The introduction of ZrN enhanced the high-temperature mechanical properties of the composite, and its hardness and fracture toughness reached 13.4 GPa and 6.1 MPa·m1/2 at 900°C, respectively. The oxidation experiment was carried out in air at 1000°C, 1300°C, and 1500°C for 5 h. It was shown that high-temperature oxidation promoted the formation and growth of porous oxide layers. The microstructure and phase composition of the formed oxide layers were investigated in detail. Finally, it was identified that the obtained composite exhibited a higher thermal diffusivity than that of monolithic Si3N4 in the temperature range of 100°C–1000°C.  相似文献   

19.
《Ceramics International》2016,42(14):15868-15875
In this research, the high temperature oxidation behavior, porosity, and microstructure of four abradable thermal barrier coatings (ATBCs) consisting of micro- and nanostructured YSZ, YSZ-10%LaPO4, and YSZ-20%LaPO4 coatings produced by atmospheric (APS) method were evaluated. Results show that the volume percentage of porosity in the coatings containing LaPO4 was higher than the monolithic YSZ sample. It was probably due to less thermal conductivity of LaPO4 phases. Furthermore, the results showed that the amount of the remaining porosity in the composite coatings was higher than the monolithic YSZ at 1000 °C for 120 h. After 120 h isothermal oxidation, the thickness of thermally growth oxide (TGO) layer in composite coatings was higher than that of YSZ coating due to higher porosity and sintering resistance of composite coatings. Finally, the isothermal oxidation resistance of conventional YSZ and nanostructured YSZ coating was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号