首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon nitride (Si3N4) ceramics doped with two different sintering additive systems (Al2O3–Y2O3 and Al2O3–Yb2O3) were prepared by hot-pressing sintering at 1800℃ for 2 h and 30 MPa. The microstructures, nano-indentation test, and mechanical properties of the as-prepared Si3N4 ceramics were systematically investigated. The X-ray diffraction analyses of the as-prepared Si3N4 ceramics doped with the two sintering additives showed a large number of phase transformations of α-Si3N4 to β-Si3N4. Grain size distributions and aspect ratios as well as their effects on mechanical properties are presented in this study. The specimen doped with the Al2O3–Yb2O3 sintering additive has a larger aspect ratio and higher fracture toughness, while the Vickers hardness is relatively lower. It can be seen from the nano-indentation tests that the stronger the elastic deformation ability of the specimens, the higher the fracture toughness. At the same time, the mechanical properties are greatly enhanced by specific interlocking microstructures formed by the high aspect ratio β-Si3N4 grains. In addition, the density, relative density, and flexural strength of the as-prepared Si3N4 ceramics doped with Al2O3–Y2O3 were 3.25 g/cm3, 99.9%, and 1053 ± 53 MPa, respectively. When Al2O3–Yb2O3 additives were introduced, the above properties reached 3.33 g/cm3, 99.9%, and 1150 ± 106 MPa, respectively. It reveals that microstructure control and mechanical property optimization for Si3N4 ceramics are feasible by tailoring sintering additives.  相似文献   

2.
In this paper, silicon carbide ceramics were prepared by aqueous gelcasting and pressureless sintering using Al2O3 and Y2O3 as the sintering additives. In order to develop well dispersed SiC slurries in the presence of sintering additives, the Al2O3 and Y2O3 powder was treated in the citric acid solution in advance. Zeta potential measurement showed that the isoelectric point (IEP) of Al2O3 and Y2O3 powder moved toward low pH region after treatment. Rheological measurement confirmed that the addition of as-treated powder showed very limited influence on the slurry properties as compared to that of untreated powder. SiC slurries with solid content of 54 vol% and enough fluidity can be developed. After gelcasting and pressureless sintering, SiC ceramics with nearly full density, fine grained and homogeneous microstructure can be obtained. Results showed that the surface treatment of Al2O3 and Y2O3 with citric acid is effective for the gelcasting process of SiC.  相似文献   

3.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   

4.
《Ceramics International》2022,48(14):20126-20133
In this study, high-strength and wave-transmission silicon nitride (Si3N4) composites were successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding and before final sintering, and the optimal moulding process parameters for the SLS Si3N4 ceramics were determined. The effects of the sintering aids and secondary CIP on the bulk density, porosity, flexural strength, fracture toughness, and wave-transmitting properties of the Si3N4 composites were studied. The results showed that the increased CIP pressure was beneficial to the densification of SLS Si3N4 ceramics and improved their mechanical properties. However, the wave-transmitting performance decreased as the CIP pressure increased. The Si3N4 ceramics prepared by the moulding of sample S11 were more in line with the performance requirements of the radomes. To obtain good comprehensive performance, an additional 3% of interparticle Y2O3 was added to the pre-printed mixed powder of granulated Si3N4 particles and resin and the secondary CIP pressure was adjusted to 280 MPa. After sintering, the bending strength, fracture toughness, and dielectric constant of the Si3N4 ceramics were 651 MPa, 6.0 MPa m1/2, and 3.48 respectively. This study provides an important method for preparing of Si3N4 composite radomes using SLS process.  相似文献   

5.
《Ceramics International》2023,49(3):4264-4272
Designed component of 0.95Al2O3–0.015Yb2O3–0.01MgO–0.025SiO2 (95Al2O3–Yb/Mg/Si) ceramics were prepared by the traditional mixed-oxide method in the sintering temperature range of 1450–1700 °C. The influence of sintering temperature on the crystal structure, densification, microstructure, mechanical, friction and wear properties of 95Al2O3-YbMgSi ceramics were systematically investigated. XRD and SEM analysis results revealed that the increase in sintering temperature was very beneficial to eliminate the pores, increase the density and grain size, which obeys the common grain growth law. Both the flexural strength and hardness of obtained samples were increased almost linearly when the sintering temperature increased from 1450 °C to 1700 °C. The ceramics sintered at 1650 °C showed the optimum properties: Hv = 1812.3, σ = 151.3 MPa, μ = 0.41, ρ = 3.72 g/cm3 and Kc = 8.06e?5 mm3/N·m, respectively. Furthermore, the results of friction and wear experiments suggested that the 95Al2O3–Yb/Mg/Si ceramic prepared at the optimizing sintering process exhibited more stable friction state and lower wear degree under non-lubricated conditions. The enhanced mechanical properties could be attributed to their structure densification, pore elimination and gain growth with the increase of sintering temperature.  相似文献   

6.
《Ceramics International》2023,49(5):7236-7244
A method for preparation of dense Y2O3–MgO composite ceramics by the microwave sintering was developed. The initial powders were obtained by glycine-nitrate self-propagating high-temperature synthesis (SHS) with different oxidant-to-fuel ratio. Density and IR-transmission of microwave sintered Y2O3–MgO ceramics increase with respect to dispersity of the SHS-powders and reach its maximum values for the powder prepared in a 20% fuel excess. The sintering behavior of Y2O3–MgO compacts was investigated by optical dilatometry and measuring an electric conductivity upon heating. Significant microwave radiation power surges at temperatures of 900–1000 °C, caused by the decomposition of magnesium carbonate, have been found. As a result of matching the conditions for the synthesis of powders and sintering modes, a transmission of composite ceramics of 78% at a wavelength of 6 μm was achieved at a maximum processing temperature of 1500 °C.  相似文献   

7.
The effects of adding 1–8 wt% Y2O3 on phase formation and fracture toughness of Al2O3xZrO2–Y2O3(AZY) ceramics were studied. Phase formations of the samples were characterized by the X-ray diffraction (XRD) technique. It was found that the major phase was rhombohedral-Al2O3, while the minor phase consisted of the monoclinic-ZrO2, tetragonal-ZrO2 and monoclinic-Y2O3. It was found that Y2O3 contents did not clearly influence grain shape of AZY ceramics. The results obtained from the microhardness test could be used to evaluate the fracture toughness. It was found that the smaller grains had high fracture toughness. The maximum fracture toughness of 4.827 MPa m1/2 was obtained from 4 wt% Y2O3. Refinement of lattice parameters using Rietveld analysis revealed the quantitative phases of AZY ceramics. This shows that under adding Y2O3 conditions the proportion of tetragonal-ZrO2 phase plays an important role for the mechanical properties of AZY ceramics.  相似文献   

8.
In this study, a dense Al2O3–Y3Al5O12 (YAG) ceramic was synthesized by flash sintering a powder mixture of Al2O3 and Y2O3 in less than 150 seconds at a furnace temperature of 1350°C. The resultant ceramic has a well-defined eutectic structure consisting of alternating Al2O3 and YAG layers. The hardness and fracture toughness of the ceramic were measured to be 18.5 GPa and 4.3 MPa.m1/2, respectively. These values are comparable to those of similar eutectic ceramics made by directional solidification techniques. The results suggest a new method for making high-performance eutectic ceramics, which could be applied in other systems.  相似文献   

9.
《Ceramics International》2018,44(18):22412-22420
In this work, Si3N4 ceramics were fabricated through an aqueous gelcasting method using a low–toxic monomer called N, N–dimethylacrylamide (DMAA) followed by gas pressure sintering at 1850 °C for 2 h under 6 MPa N2 atmosphere. The effect of solid loading on performance of slurries, green and sintered bodies was investigated systematically. The results show that the slurries with a solid loading as high as 50 vol% (viscosity 0.17 Pa.s at 100 s–1) were achieved. With the increase of solid loading (30–50 vol%), the green bodies exhibited a monotonically decreased, however high enough in general, flexural strength of 16.50–11.52 MPa, which was comparable to that of widely–used neurovirulent acrylamide (AM) gelling system. In regard to the sintered bodies, increasing solid loading significantly promoted sintering and improved mechanical properties and thermal conductivity as a result of the increased density, bimodal distribution structure, as well as suitable interfacial bonding strength. The best performance parameters of Si3N4 ceramics, bulk density of 3.25 g/cm3, apparent porosity of 0.67%, flexural strength of 898.92 MPa, fracture toughness of 6.42 MPa m1/2, Vickers hardness of 2.81 GPa, and thermal conductivity of 34.69 W m–1 K–1, were obtained at 50 vol% solid loading. This work renders low–toxic DMAA gelling system promising prospect in preparation of high–performance Si3N4 ceramics by gelcasting.  相似文献   

10.
A two-step sintering process was conducted to produce β-Si3N4 ceramics with high thermal conductivity. During the first step, native SiO2 was eliminated, and Y2O3 was in situ generated by a metal hydride reduction process, resulting in a high Y2O3/SiO2 ratio. The substitution YH2 for Y2O3 endow Si3N4 ceramics with an increase of 29% in thermal conductivity from 95.3 to 123 W m−1 K−1 after sintered at 1900°C for 12 hours despite an inferior sinterability. This was primarily attributed to the purified enlarged grains, devitrified grain boundary phase, and reduced lattice oxygen content in the YH2-MgO-doped material.  相似文献   

11.
Aluminum nitride (AlN) ceramics with the concurrent addition of CaZrO3 and Y2O3 were sintered at 1450-1700 °C. The degree of densification, microstructure, flexural strength, and thermal conductivity of the resulting ceramics were evaluated with respect to their composition and sintering temperature. Specimens prepared using both additives could be sintered to almost full density at relatively low temperature (3 h at 1550 °C under nitrogen at ambient pressure); grain growth was suppressed by grain-boundary pinning, and high flexural strength over 630 MPa could be obtained. With two-step sintering process, the morphology of second phase was changed from interconnected structure to isolated structure; this two-step process limited grain growth and increased thermal conductivity. The highest thermal conductivity (156 Wm−1 K−1) was achieved by two-step sintering, and the ceramic showed moderate flexural strength (560 MPa).  相似文献   

12.
Si3N4–TiN composites were successfully fabricated via planetary ball milling of 70 mass% Si3N4 and 30 mass% Ti powders, followed by spark plasma sintering (SPS) at 1250–1350 °C. The sintering mechanism for SPS was a hybrid of dissolution–reprecipitation and viscous flow. The electrical resistivity decreased with increasing sintering temperature up to a minimum at 1250 °C and then increased with the increasing sintering temperature. The composites prepared by SPS at 1250–1350 °C could be easily machined by electrical discharge machining. Composite prepared by SPS at 1300 °C showed a high hardness (17.78 GPa) and a good machinability.  相似文献   

13.
Macro-porous SiC was fabricated without using pore-forming agents by an in situ reaction bonding process. A bonding additive, Al2O3–Y2O3–SiO2, with a low melting temperature was mixed with SiC particles and sintered at 1500 °C and 1600 °C for 1 h in Ar. Macro-porous SiC with a porosity of 32.7–45.9%, a pore size of 3.4–4.2 μm, and a relatively narrow and uniform pore size distribution was fabricated by varying the amount of bonding additive. The flexural strength of macro-porous SiC prepared at 1500 °C increased from 47.2 MPa to 71.2 MPa while the porosity decreased from 45.9% to 42.8%, respectively. When the sintering temperature of the macro-porous SiC was increased to 1600 °C, the flexural strengths were significantly reduced to 32.6–35.6 MPa, along with a reduction in porosity and pore size. The permeability of macro-porous SiC prepared at 1500 °C varied from 1.59 × 10?12 m2 to 1.26 × 10?12 m2, depending on the porosity. As the sintering temperature increased from 1500 °C to 1600 °C, the permeability decreased to less than 1.00 × 10?12 m2 because of the reduced porosity and average pore size. The electrical resistivity of macro-porous SiC prepared at 1500 °C and 1600 °C varied from 2.7 × 108 Ω-cm to 1.4 × 109 Ω-cm and from 1.3 × 108 Ω-cm to 1.7 × 109 Ω-cm, respectively, with increasing volume percent of bonding additives. The relatively high electrical resistivity was apparently due to neck bonding phase between SiC particles formed by phases consisting of Y2Si2O7, YAG, and residual Al2O3.  相似文献   

14.
The influence of various rare-earth oxide additives and the addition of SiC nanoparticles on the thermal shock resistance of the Si3N4 based materials was investigated. The location of SiC particles inside the Si3N4 grains contributed to a higher level of residual stresses, which caused a failure at the lower temperature difference compared to the composites with a preferential location of the SiC at the grain boundaries. A critical temperature difference increased with an increasing ionic radius of RE3+ for both the composites and the monoliths. The critical temperature difference for the composite (580 °C) and the monolith (680 °C) sintered with La2O3 was significantly higher compared to the composite and the monolith doped with Lu2O3 (430 °C). A good agreement was found between the results of the critical temperature difference estimated by the indentation quench test and that obtained by the strength retention method.  相似文献   

15.
《Ceramics International》2023,49(3):4403-4411
B4C-20 wt% TiB2 ceramics were fabricated by hot pressing B4C and ball-milled TiB2 powder mixtures. The effects of the TiB2 particle size on the microstructure and mechanical properties were investigated. The results showed that the TiB2 particle size played an important role in the mechanical properties of the B4C–TiB2 ceramics. In addition, SiO2 introduced by ball milling was beneficial for densification but detrimental to the mechanical properties of the B4C–TiB2 ceramics. The typical values of relative density, hardness, flexural strength, and fracture toughness of the ceramics were 99.20%, 35.22 GPa, 765 MPa, and 7.69 MPa m1/2, respectively. The toughening mechanisms of the B4C–TiB2 ceramics were explained by crack deflection and crack branching. In this study, the effects of high pressure and temperature caused liquefying SiO2 to migrate to the surface of B4C–TiB2 and react with diffused carbon source in the graphite foil to form a 30 μm thick SiC layered structure, which improved the high-temperature oxidation resistance of the material. The unique SiC layered structure overcame the insufficient oxidation resistance of B4C and TiB2, thereby improving the oxidation resistance of the ceramics under high-temperature service conditions.  相似文献   

16.
《Ceramics International》2021,47(19):27058-27070
The porous SiC–Si3N4 composite ceramics with good EMW absorption properties were prepared by combination of gelcasting and carbothermal reduction. The pre-oxidation of Si3N4 powders significantly improved the rheological properties of slurries (0.06 Pa s at 103.92 s−1) and also suppressed the generation of NH3 and N2 from Si3N4 hydrolysis and reaction between Si3N4 and initiator APS, thereby reducing the pore defects in green bodies and enhancing mechanical properties with a maximum value of 42.88 MPa. With the extension of oxidation time from 0 h to 10 h, the porosity and pore size of porous SiC–Si3N4 composite ceramics increased from approximately 41.86% and 1.0–1.5 μm to 46.33% and ~200 μm due to the production of CO, N2 and gaseous SiO, while the sintering shrinkage decreased from 16.24% to 10.50%. With oxidation time of 2 h, the Si2N2O fibers formed in situ by the reaction of Si3N4 and amorphous SiO2 effectively enhanced the mechanical properties, achieving the highest flexural strength of 129.37 MPa and fracture toughness of 4.25 MPa m1/2. Compared with monolithic Si3N4 ceramics, the electrical conductivity, relative permittivity and dielectric loss were significantly improved by the in-situ introduced PyC from the pyrolysis of three-dimensional network DMAA-MBAM gel in green bodies and the SiC from the carbothermal reduction reaction between PyC and SiO2 and Si3N4. The porous SiC–Si3N4 composite ceramics prepared by the unoxidized Si3N4 powders demonstrated the optimal EMW absorption properties with reflection loss of −22.35 dB at 8.37 GHz and 2 mm thickness, corresponding to the effective bandwidth of 8.20–9.29 GHz, displaying great application potential in EMW absorption fields.  相似文献   

17.
Si3N4/O′–SiAlON composite ceramics with superior oxidation resistance properties were fabricated by a repeated sintering method. The effects of sintering time on the phase evolution, microstructure, and oxidation resistance properties of the Si3N4/O′–SiAlON composite ceramics were investigated. The results indicated that the content of the O′–SiAlON phase and the densification of Si3N4/O′–SiAlON composite ceramics increased after two-time sintering. Furthermore, the thickness of the oxide layer of the Si3N4/O′–SiAlON composite ceramics after oxidation at 1100–1500°C for 30 h was not significant. Compared to the oxidation weight gain after the one-time sintering process, the oxidation weight gain of Si3N4/O′–SiAlON composite ceramics was 0.432 mg/cm2 after two-time sintering when oxidized at 1500 C for 30 h, which was reduced by 43.3%. The mechanism of the improved oxidation resistance properties was ascribed to the formation of more O′–SiAlON and the enhancement of the densification.  相似文献   

18.
《Ceramics International》2021,47(19):26947-26954
In this work, the 0.67BiFeO3-0.33BaTiO3 ferroelectric ceramic was prepared by Reaction Flash Sintering (RFS). This preparation technique combines synthesis and sintering in a single Flash experiment. The starting oxides reacted during the flash to produce a stoichiometric well-sintered solid solution at a temperature of 858 °C by applying a modest field of 35 V cm−1. The process takes place in a matter of seconds, which allows obtaining a pure perovskite structure without secondary phases. X-ray diffraction (XRD) results show the mixture of rhombohedral and pseudocubic phases expected for a composition that lies within a morphotropic phase boundary (MPB) region, since a significant splitting is observed in the reflections at 2θ values of 39° and 56.5°. The microstructure exhibit a peculiar bimodal grain size distribution that determines the electrical properties. As compared with previous results, flash-prepared 0.67BiFeO3-0.33BaTiO3 evidences smaller grain size, as well as slightly lower remanent polarization (Pr) and smaller coercive field (Ec) under similar electric fields. It is also demonstrated that the preparation by RFS provides benefits regarding electrical energy consumption.  相似文献   

19.
《Ceramics International》2016,42(12):14006-14010
Formation of WSi2–Al2O3 and W5Si3–Al2O3 composites was studied by thermite-based combustion synthesis. The addition of two thermite combinations composed of WO3+2Al and 0.6WO3+0.6SiO2+2Al into the W-Si reaction systems facilitated the combustion wave propagating in a self-sustaining manner and contributed to the in situ formation of tungsten silicides along with Al2O3. Experimental results showed that the former thermite mixture is more exothermic than the latter, and a decrease in the combustion temperature and flame-front velocity with increasing silicide phase formed in the composite. Depending on the reaction stoichiometry, the combustion wave velocity varied from 9.5 to 3.7 mm/s and temperature from 1650 to 1280 °C. A complete phase conversion and a broad range of the molar ratio of WSi2/Al2O3 from 0.8 to 4.0 were achieved for the production of the WSi2–Al2O3 composites. Due to the lower formation exothermicity, the W5Si3–Al2O3 composites were produced with a narrower range of W5Si3/Al2O3 from 0.4 to 2.0, beyond which combustion failed to proceed. Moreover, there exist WSi2 and unreacted W in the as-synthesized W5Si3–Al2O3 composites.  相似文献   

20.
This study describes the synthesis of ceramics, in which a micrometre-sized Al2O3–ZrO2 nanopowder was used as an oxide base for the hardening of the materials. To a suspension of this mixed metal oxide, the pore-forming crystallisation additives camphor and carbamide were added to produce ceramics with thin permeable pores. Camphor crystallised in the oxide suspension in the form of single pentagonal stars and сarbamide crystallised in the form of thin elongated needles. The use of the different crystallisation additives allowed the formation of ceramics after sintering that have both permeable and complex pore morphologies, where anisotropic properties were observed using carbamide as an additive but not when camphor was used. The total porosity of the resulting ceramics was 51.3%, with a compressive strength in the range of 17.3–92.3 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号