首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Currently, dengue represents one of the most significant arboviral disease worldwide, for which a vaccine is not yet available. Persistent challenges in live viral dengue vaccines have sparked a keen interest in exploring non-replicating dengue vaccines. We have examined the feasibility of using the methylotrophic yeast Pichia pastoris to develop a chimeric vaccine candidate displaying the dengue virus type-2 (DENV-2) envelope domain III (EDIII), implicated in host receptor binding and in the induction of virus-neutralizing antibodies, on the surface of non-infectious virus-like particles (VLP)-based on the Hepatitis B virus core antigen (HBcAg).

Methods

We designed a fusion antigen by inserting DENV-2 EDIII into c/e1 loop of HBcAg. A codon-optimized gene encoding this fusion antigen was integrated into the genome of P. pastoris, under the control of the Alcohol Oxidase 1 promoter. The antigen was expressed by methanol induction and purified to near homogeneity by Ni2+ affinity chromatography. The purified antigen was characterized physically and functionally to evaluate its ability to assemble into VLPs, and elicit DENV-2-specific antibodies in mice.

Results

This fusion antigen was expressed successfully to high yields and purified to near homogeneity. Electron microscopy and competitive ELISA analyses showed that it formed VLPs in which the EDIII moiety was accessible to different EDIII-specific antibodies. These VLPs were immunogenic in mice, stimulating the production of antibodies that could specifically recognize DENV-2 and neutralize its infectivity. However, virus-neutralizing antibody titers were modest.

Conclusions

Our data show: (i) insertion of EDIII into the c/e1 loop of HBcAg does not compromise particle assembly; and (ii) the chimeric VLPs elicit a specific humoral response against DENV-2. The strategy of displaying dengue virus EDIII using a VLP platform will need further optimization before it may be developed into a viable alternative option.  相似文献   

2.
《Vaccine》2022,40(15):2299-2310
There is an urgent need for a safe and effective vaccine against dengue virus (DENV) which infects about 390 million humans per year. In the present study we combined modifications of two DENV proteins, the nonstructural protein 1 (NS1) and the envelope (E) protein, to produce a DENV vaccine candidate with enhanced features. One of these modified proteins was a C-terminal-deleted fragment of NS1 called ΔC NS1 which we have shown previously to be protective without the potentially harmful effects of cross-reactive epitopes common to surface antigens on platelets and endothelial cells. The other modified protein was an envelope protein domain III (cEDIII) containing a consensus amino acid sequence among the four serotypes of DENV, which induces neutralizing antibody against all four DENV serotypes. The cEDIII and ΔC NS1 were expressed as a fusion protein cEDIII-ΔC NS1 and its protective effects against DENV were evaluated in a mouse model. C3H/HeN mice were immunized three times with cEDIII-ΔC NS1 fusion protein mixed with alum as adjuvant. Sera collected from cEDIII-ΔC NS1-immunized mice neutralized four serotypes of DENV and also caused complement-mediated cytolysis of HMEC-1 cells infected with each of the four different DENV serotypes. Mice immunized with cEDIII-ΔC NS1 and challenged with DENV showed reduced serum virus titer, soluble NS1 and bleeding time, compared with mice infected with DENV alone. The results reveal that antibodies induced by cEDIII-ΔC NS1 not only show anti-viral efficacy by in vitro assays but also provide protective effects against DENV infection in a mouse model. The cEDIII-ΔC NS1 thus represents a novel, effective DENV vaccine candidate.  相似文献   

3.
Zheng Q  Fan D  Gao N  Chen H  Wang J  Ming Y  Li J  An J 《Vaccine》2011,29(4):763-771
Dengue is one of the most important mosquito-borne viral diseases. In past years, although considerable effort has been put into the development of a vaccine, there is currently no licensed dengue vaccine. In this study, we constructed DNA vaccines that carried the prM-E-NS1 genes of dengue virus serotype 1 (DV1) with or without the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene, an attractive DNA vaccine adjuvant. Immunization with the plasmid pCAG-DV1/E/NS1, which expresses viral prM-E-NS1, or the bicistronic plasmid pCAG-DV1-GM, which co-expresses viral prM-E-NS1 and GM-CSF, resulted in long-term IgG response, high levels of splenocyte-secreted interferon-γ and interleukin-2, strong cytotoxic T lymphocyte activity and sufficient protection in the DV1-challenged mice. This suggested that both humoral and cellular immune responses were induced by the immunizations and that they played important roles in protection against the DV1 challenge. Interestingly, the magnitude, quality and protective capacity of the immune responses induced by immunization with pCAG-DV1/E/NS1 or pCAG-DV1-GM seemed stronger than those induced by pCAG-DV1/E (expressing viral prM-E alone). Taken together, we demonstrated that prM/E plus NS1 would be a suitable solution for the development of a DNA vaccine against DV.  相似文献   

4.
Shao S  Zhou H  Tong Y  Ren Y  Chen Z 《卫生研究》2011,40(3):295-298
目的探讨丙型肝炎病毒(HCV)包膜E2蛋白DNA疫苗诱导小鼠产生中和抗体的可行性。方法构建截除疏水性羧基末端的HCV包膜蛋白表达质粒pCI-1b661以及同时截除疏水性羧基末端和高变区1(HVR1)的表达质粒pCI-1b661Δ,转染293T细胞,以Western blot和ELISA检测细胞内和培养上清中的HCVE2蛋白,将两种表达质粒及空载体分别肌注免疫BALB/c小鼠,以ELISA检测小鼠血清中的HVR1抗体,以HCV假病毒颗粒(HCVpp)分析小鼠血清的中和活性。结果 2种表达质粒均能表达分泌性截短型E2蛋白。pCI-1b661免疫的8只小鼠血清中均可检测到HVR1抗体,而pCI-1b661Δ免疫血清中未检测到HVR1抗体。pCI-1b661和pCI-1b661Δ免疫血清对HCVpp的中和率分别为(78.5±13.8)%和(38.7±6.5)%,差异有显著性(P<0.01)。pCI-1b661免疫组小鼠血清的中和率与HVR1抗体水平呈正相关(r=0.967,P<0.01)。结论表达截短型E2蛋白的DNA疫苗能诱导产生HCV中和抗体,其主要成员为HVR1抗体。  相似文献   

5.
A prototype dengue-1 DNA vaccine was shown to be safe and immunogenic in a previous Phase 1 clinical trial. Anti-dengue-1 neutralizing antibody responses were detectable only in the group of volunteers receiving the high dose of nonadjuvanted vaccine and the antibody titers were low. Vaxfectin®, a lipid-based adjuvant, enhances the immunogenicity of DNA vaccines. We conducted a nonhuman primate study to evaluate the effect of Vaxfectin® on the immunogenicity of a tetravalent dengue DNA vaccine. Animals were immunized on days 0, 28 and 84, with each immunization consisting of 3 mg of Vaxfectin®-adjuvanted tetravalent dengue DNA vaccine. The use of Vaxfectin® resulted in a significant increase in anti-dengue neutralizing antibody responses against dengue-1, -3 and -4. There was little to no effect on T cell responses as measured by interferon gamma ELISPOT assay. Animals immunized with the Vaxfectin®-formulated tetravalent DNA vaccine showed significant protection against live dengue-2 virus challenge compared to control animals (0.75 mean days of viremia vs 3.3 days). Animals vaccinated with nonadjuvanted DNA had a mean 2.0 days of viremia. These results support further evaluation of the Vaxfectin®-adjuvanted tetravalent dengue DNA vaccine in a Phase 1 clinical trial.  相似文献   

6.
Block OK  Rodrigo WW  Quinn M  Jin X  Rose RC  Schlesinger JJ 《Vaccine》2010,28(51):8085-8094
Dengue viruses co-circulate as four serologically distinct viruses (DENV1-4) that commonly infect individuals sequentially. Current DENV candidate vaccines incorporate the entire virion envelope E protein (E) ectodomain thereby stimulating both DENV serotype-specific and cross-reactive antibodies. Because the latter may enhance naturally acquired infection, such vaccine formulations must be tetravalent. We evaluated the neutralizing and enhancing antibody response to E domain III (dIII) proteins, in which serotype-specific neutralizing determinants are concentrated. Mice immunized with insect cell-secreted recombinant DENV-dIII proteins individually, and in tetravalent combination, produced serotype-specific IgG1 neutralizing antibodies that nevertheless exhibited measurable DENV enhancing activity in FcγR-bearing cells. Vaccine strategies directed to DENV-dIII-targeted neutralizing antibody production remain attractive but will likely require further modifications to induce safe, protective immunity.  相似文献   

7.
Dengue virus (DENV) is the causal agent of severe disease and, in some cases, mortality in humans, but no licensed vaccines against dengue are available. An effective vaccine against dengue requires long-term humoral and cellular immune responses. Several viral proteins have been the subjects of intense research, especially the envelope (E) protein, aimed at developing a vaccine. Domain III of the envelope protein (EDIII) has been identified as a potential candidate because it is involved in binding to host cell receptors and contains epitopes that elicit virus neutralizing antibodies. However, this domain is not sufficiently antigenic when is expressed and administered as antigen to elicit a strong immune response. One alternative to enhance immunogenicity is to target the antigen to dendritic cells to induce T-cells for broad antibody responses. In this work, a single chain antibody fragment (scFv) raised against the DEC-205 receptor fused with the EDIII was successfully expressed in Nicotiana benthamiana. The recombinant protein was expressed and purified from the plant and evaluated in BALB/c mice to test its immunogenicity and ability to induce neutralizing antibodies against DENV. The mice immunized with the recombinant protein produced specific and strong humoral immune responses to DENV. Only two immunizations were required to generate a memory response to DENV without the presence of adjuvants. Also, recognition of the recombinant protein with sera from DENV-infected patients was observed. These findings suggest that this strategy has potential for development of an effective vaccine against DENV.  相似文献   

8.
《Vaccine》2019,37(32):4444-4453
Phase 1 clinical trials with a DNA vaccine for dengue demonstrated that the vaccine is safe and well tolerated, however it produced less than optimal humoral immune responses. To determine if the immunogenicity of the tetravalent dengue DNA vaccine could be enhanced, we explored alternate, yet to be tested, methods of vaccine administration in non-human primates. Animals were vaccinated on days 0, 28 and 91 with either a low (1 mg) or high (5 mg) dose of vaccine by the intradermal or intramuscular route, using either needle-free injection or electroporation devices. Neutralizing antibody, IFN-γ T cell and memory B cell responses were compared to a high dose group vaccinated with a needle-free intramuscular injection delivery device similar to what had been used in previous preclinical and clinical studies. All previously untested vaccination methodologies elicited improved immune responses compared to the high dose needle-free intramuscular injection delivery group. The highest neutralizing antibody responses were observed in the group that was vaccinated with the high dose formulation via intradermal electroporation. The highest IFN-γ T cell responses were also observed in the high dose intradermal electroporation group and the CD8+ T cells were the dominant contributors for the IFNγ response. Memory B cells were detected for all four serotypes. More than a year after vaccination, groups were challenged with dengue-1 virus. Both the low and high dose intradermal electroporation groups had significantly fewer days of dengue-1 virus RNAemia compared to the control group. The results from this study demonstrate that using either an electroporation device and/or the intradermal route of delivery increases the immune response generated by this vaccine in non-human primates and should be explored in humans.  相似文献   

9.
Japanese encephalitis is a major cause of encephalitis in Asia. Cases occur largely in rural areas of the South and East Asian region resulting in significant morbidity and mortality. Multiple vaccines exist to control Japanese encephalitis, but all suffer from problems. Envelope protein domain III of Japanese encephalitis virus is involved in binding to host receptors and it contains specific epitopes that elicit virus-neutralizing antibodies. Earlier, the protective efficacy of domain III has been evaluated in mice by some researchers, but these studies are lacking in explanation of humoral and cellular immune responses. We have earlier reported cloning, expression, purification and in vitro refolding of Japanese encephalitis virus envelope protein domain III (rJEV-DIII). Ninety percent JEV is neutralized when the serum against refolded rJEV-DIII is used at a dilution of 1:80. In the present study, we have evaluated the immunomodulatory potential of refolded rJEV-DIII protein in BALB/c mice with Freunds complete/incomplete adjuvants. Mice were tested for humoral immune response by ELISA. Cell-mediated immune response was tested by lymphocyte proliferation assay and cytokine profiling. The rJEV-DIII generated high IgG antibody and its isotypes (IgG2a and IgG3) and induced significant expression of INF-γ and IL-2 cytokines. The rJEV-DIII induced significant lymphoproliferation of splenocytes. In conclusion rJEV-DIII induced Th1 type of immune response which plays an important role in protection for intracellular pathogens.  相似文献   

10.
Yu YZ  Zhang SM  Sun ZW  Wang S  Yu WY 《Vaccine》2007,25(52):8843-8850
In current study, the immunogenicity of a plasmid DNA replicon vaccine (pSCARSHc) encoding the Hc domain of Clostridium botulinum neurotoxin serotype A (AHc) was investigated and compared with a conventional plasmid DNA vaccine (pcDNASHc) encoding the same antigen. In vitro, pSCARSHc incorporating Semliki Forest virus (SFV) replicon could express AHc protein and induce apoptosis of transfected cells. Comparison with the conventional plasmid DNA vaccine (pcDNASHc) yielded several interesting results. First, our self-designed pSCARSHc could induce relatively higher AHc-specific antibodies and lymphocyte proliferative responses in immunized Balb/c mice, especially at low doses. Second, while both pSCARSHc and pcDNASHc induced Th2-type immune responses, the ratio of IgG1 to IgG2a was lower in pSCARSHc groups and the Th2- and Th1-type humoral immune responses induced by pSCARSHc were also stronger than that of the pcDNASHc vaccine. Third, it was shown that the sera from pSCARSHc-vaccinated mice conferred more efficient protection than those from pcDNASHc-vaccinated mice by BoNT/A neutralization assay. Finally, mice immunized with pSCARSHc could also elicit more efficient protection against BoNT/A than pcDNASHc. These results indicate that our plasmid DNA replicon vaccine can provide strong immunogenicity and should be a potential alternative strategy to conventional DNA vaccines in developing an efficacious vaccine against C. botulinum neurotoxin serotype A.  相似文献   

11.
目的 了解2001-2015年广州市登革病毒2型(DENV2)的流行情况;通过对分离DENV2 E基因的进化树和分子钟分析,掌握毒株的进化情况和趋势。方法 将登革热确诊病例的血清用荧光PCR进行检测,DENV阳性血清用C6/36细胞进行病毒分离,测定分离毒株的E基因序列,利用Mega 4.0软件构建进化树,采用BEASTv1.8.2绘制分子进化钟。结果 2001-2015年共分离到26株DENV2,从基因型上分类属于全球型和亚洲1型,并与东南亚地区分离到的毒株相似率较高;BEASTv1.8.2计算出广州市DENV2全球型在46年前和35年前进一步出现亚型的分化,广州市DENV2的平均变异率为每年每位点7.1×10-4结论 广州市DENV2与东南亚地区的毒株有较高同源性和进化上的联系,广州市DENV的输入压力较大,存在重症登革热暴发的潜在风险。流行于广州市的全球型DENV2可能存在2个不同输入来源,广州市DENV2的变异率与周边地区基本持平。  相似文献   

12.
《Vaccine》2015,33(33):4105-4116
We describe here the preclinical development of a dengue vaccine composed of recombinant subunit carboxy-truncated envelope (E) proteins (DEN-80E) for each of the four dengue serotypes. Immunogenicity and protective efficacy studies in Rhesus monkeys were conducted to evaluate monovalent and tetravalent DEN-80E vaccines formulated with ISCOMATRIX™ adjuvant. Three different doses and two dosing regimens (0, 1, 2 months and 0, 1, 2, and 6 months) were evaluated in these studies. We first evaluated monomeric (DEN4-80E) and dimeric (DEN4-80EZip) versions of DEN4-80E, the latter generated in an attempt to improve immunogenicity. The two antigens, evaluated at 6, 20 and 100 μg/dose formulated with ISCOMATRIX™ adjuvant, were equally immunogenic. A group immunized with 20 μg DEN4-80E and Alhydrogel™ induced much weaker responses. When challenged with wild-type dengue type 4 virus, all animals in the 6 and 20 μg groups and all but one in the DEN4-80EZip 100 μg group were protected from viremia. Two out of three monkeys in the Alhydrogel™ group had breakthrough viremia. A similar study was conducted to evaluate tetravalent formulations at low (3, 3, 3, 6 μg of DEN1-80E, DEN2-80E, DEN3-80E and DEN4-80E respectively), medium (10, 10, 10, 20 μg) and high (50, 50, 50, 100 μg) doses. All doses were comparably immunogenic and induced high titer, balanced neutralizing antibodies against all four DENV. Upon challenge with the four wild-type DENV, all animals in the low and medium dose groups were protected against viremia while two animals in the high-dose group exhibited breakthrough viremia. Our studies also indicated that a 0, 1, 2 and 6 month vaccination schedule is superior to the 0, 1, and 2 month schedule in terms of durability. Overall, the subunit vaccine was demonstrated to induce strong neutralization titers resulting in protection against viremia following challenge even 8-12 months after the last vaccine dose.  相似文献   

13.
Osorio JE  Huang CY  Kinney RM  Stinchcomb DT 《Vaccine》2011,29(42):7251-7260
Dengue. virus infection is the leading arboviral cause of disease worldwide. A vaccine is being developed based on the attenuated DEN-2 virus, DEN-2 PDK-53. In this review, we summarize the characteristics of the parent DEN-2 PDK-53 strain as well as the chimeric viruses containing the prM and E genes of DEN-1, DEN-3 or DEN-4 virus in the genetic backbone of the DEN-2 PDK-53 virus (termed DENVax). Tetravalent DENVax formulations containing cloned, fully sequenced isolates of the DEN-2 PDK-53 virus and the three chimeras have been evaluated for safety and efficacy in preclinical animal models. Based on the safety, immunogenicity and efficacy in preclinical studies, Phase 1 clinical testing of DENVax has been initiated.  相似文献   

14.
Bovine viral diarrhea virus (BVDV) is one of the major pathogens in cattle. In this study, newborn calves with maternal antibodies were vaccinated with a BVDV DNA vaccine, either by conventional intramuscular (IM) injection or with the TriGrid™ Delivery System for IM delivery (TDS-IM). The calves vaccinated with the TDS-IM developed more rapidly and effectively BVDV-specific humoral and cell-mediated immune responses in the presence of maternal antibodies. Overall, the immune responses induced by delivery with the TDS-IM remained stronger than those elicited by conventional IM injection of the BVDV DNA vaccine. Accordingly, electroporation-mediated delivery of the BVDV DNA vaccine resulted in close to complete protection from clinical signs of disease, while conventional IM administration did not fully prevent morbidity and mortality following challenge with BVDV-2. These results demonstrate the TDS-IM to be effective as a delivery system for a BVDV DNA vaccine in newborn calves in the presence of maternal antibodies, which supports the potential of electroporation as a delivery method for prophylactic DNA vaccines.  相似文献   

15.
《Vaccine》2023,41(15):2524-2533
Here we report the development of a thermally stable, orally administered, candidate Zika vaccine using human serotype 5 adenovirus (AdHu5). We engineered AdHu5 to express the genes for the envelope and NS1 proteins of Zika virus. AdHu5 was formulated using a proprietary platform, OraPro, comprising a mix of sugars and modified amino acids that can overcome elevated temperatures (37 C), and an enteric coated capsule that protects the integrity of the AdHu5 from the acid in the stomach. This enables the delivery AdHu5 to the immune system of the small intestine. We show that oral delivery of AdHu5 elicited antigen-specific serum IgG immune responses in a mouse model and in a non-human primate model. Importantly, these immune responses were able reduce viral counts in mice and to prevent detectable viraemia in the non-human primates on challenge with live Zika virus. This candidate vaccine has significant advantages over many current vaccines that are maintained in a cold or ultra-cold chain and require parenteral administration.  相似文献   

16.
Mota J  Acosta M  Argotte R  Figueroa R  Méndez A  Ramos C 《Vaccine》2005,23(26):3469-3476
Dengue fever is a growing public health concern around the world and despite vaccine development efforts, there are currently no effective dengue vaccines. In the present study we report the induction of protective antibodies against dengue virus by DNA immunization with domain III (DIII) region of the envelope protein (E) in a mouse model. The DIII region of all four dengue virus serotypes were cloned separately into pcDNA 3 plasmid. Protein expression was tested in COS-7 cells. Each plasmid, or a tetravalent combination, were used to immunize BALB/c mice by intramuscular route. Presence of specific antibodies was evaluated by ELISA, and neutralizing antibodies were tested using a cytopathogenic effect (CPE) inhibition assay in BHK-21 cells, as well as in newborn mice challenged intracranially with dengue 2 virus. Mice immunized with individual DIII constructs or the tetravalent formulation developed antibodies against each corresponding dengue serotype. Antibody titers by ELISA were similar for all serotypes and no significant differences were observed when boosters were administered, although antibody responses were dose-dependent. CPE inhibition assays using Den-2 virus showed neutralization titers of 1:10 in mice immunized with individual DIII plasmid or those immunized with the tetravalent formulations. 43% of newborn mice challenged with Den-2 in combination with sera from mice immunized with Den-2 DIII plasmid were protected, whereas sera from mice immunized with the tetravalent formulation conferred 87% protection. Our results suggest that DIII can be used as a tetravalent DNA formulation to induce neutralizing and protective antibodies against dengue virus.  相似文献   

17.
Candidate dengue DNA vaccine constructs for each dengue serotype were developed by incorporating pre-membrane and envelope genes into a plasmid vector. A Phase 1 clinical trial was performed using the dengue virus serotype-1 (DENV-1) vaccine construct (D1ME100). The study was an open-label, dose-escalation, safety and immunogenicity trial involving 22 healthy flavivirus-naïve adults assigned to one of two groups. Each group received three intramuscular injections (0, 1, and 5 months) of either a high dose (5.0 mg, n = 12) or a low dose (1.0 mg, n = 10) DNA vaccine using the needle-free Biojector® 2000. The most commonly reported solicited signs and symptoms were local mild pain or tenderness (10/22, 45%), local mild swelling (6/22, 27%), muscle pain (6/22, 27%) and fatigue (6/22, 27%). Five subjects (41.6%) in the high dose group and none in the low dose group developed detectable anti-dengue neutralizing antibodies. T-cell IFN gamma responses were detected in 50% (4/8) and 83.3% (10/12) of subjects in the low and high dose groups, respectively. The safety profile of the DENV-1 DNA vaccine is acceptable at both doses administered in the study. These results demonstrate a favorable reactogenicity and safety profile of the first in human evaluation of a DENV-1 DNA vaccine.  相似文献   

18.
West Nile Virus (WNV) is an emerging pathogenic flavivirus with increasing distribution worldwide. Birds are the natural host of the virus, but also mammals, including humans, can be infected. In some cases, a WNV infection can be associated with severe neurological symptoms. All currently available WNV vaccines are in the veterinary sector, and there is a need to develop safe and effective immunization technologies, which can also be used in humans. An alternative to current vaccination methods is DNA immunization. Most current DNA vaccine candidates against flaviviruses simultaneously express the viral envelope (E) and membrane (prM) proteins, which leads to the formation of virus-like particles. Here we generated a DNA plasmid, which expresses only the E-protein ectodomain. Vaccination of mice stimulated anti-WNV T-cell responses and neutralizing antibodies that were higher than those obtained after immunizing with a recombinant protein previously shown to be a protective WNV vaccine. A single dose of the plasmid was sufficient to protect animals from a lethal challenge with the virus. Moreover, immunogenicity could be boosted when DNA injection was followed by immunization with recombinant domain DIII of the E-protein. This resulted in significantly enhanced neutralizing antibody titers and a more prominent cellular immune response. The results suggest that the WNV E-protein is sufficient as a protective antigen in DNA vaccines and that protection can be significantly improved by adding a recombinant protein boost to the DNA prime.  相似文献   

19.
Babu JP  Pattnaik P  Gupta N  Shrivastava A  Khan M  Rao PV 《Vaccine》2008,26(36):4655-4663
Dengue fever, a mosquito borne viral disease, has become a major public health problem with dramatic expansion in recent decades. Several dengue vaccines are at developing stage, none are yet available for humans. There is no vaccine or antiviral therapy available for dengue fever till date. Domain III of envelope protein is involved in binding to host receptors and it contains type and subtype-specific epitopes that elicit virus neutralizing antibodies. Hence domain III is an attractive vaccine candidate. In the present study we report the immunomodulatory potential of refolded D4EIII protein in combination with various adjuvants (Freunds Complete adjuvant, Montanide ISA720, Alum). Mice were tested for humoral immune responses by ELISA, immunofluorescence assay and plaque reduction neutralization test. Cell mediated immune response was tested by lymphocyte proliferation assay and cytokine profiling. All the formulations resulted in high antibody titers that neutralized the virus entry in vitro. D4EIII in combination with montanide ISA720 and Feuds complete adjuvant gave highest antibody endpoint titers followed by alum. The level of antigen-stimulated splenocyte proliferation and cytokine production was comparable to that obtained from Con A stimulation and cytokine profiling of stimulated splenocyte culture supernatants indicated that all the adjuvant formulations have induced cell mediated immune response as well. These findings suggest that D4EIII in combination with compatible adjuvants is highly immunogenic and can elicit high titer neutralizing antibodies and cell mediated immune response which plays an important role in intracellular infections, which proves that refolded D4EIII can be a potential vaccine candidate.  相似文献   

20.
A study to evaluate the immunogenicity and protective efficacy of a Venezuelan equine encephalitis virus (VEEV) DNA vaccine in an aerosol model of nonhuman primate infection was performed. Cynomolgus macaques vaccinated with a plasmid expressing the 26S structural genes of VEEV subtype IAB by particle-mediated epidermal delivery (PMED) developed virus-neutralizing antibodies. No serum viremia was detected in two out of three macaques vaccinated with the VEEV DNA after aerosol challenge with homologous virus, while one displayed a low viremia on a single day postchallenge. In contrast, all three macaques vaccinated with empty vector DNA developed a high viremia that persisted for at least 3 days after challenge. In addition, macaques vaccinated with the VEEV DNA had reduced febrile reactions, lymphopenia, and clinical signs of disease postchallenge as compared to negative control macaques. Therefore, although the sample size was small in this pilot study, these results indicate that a VEEV DNA vaccine administered by PMED can at least partially protect nonhuman primates against an aerosol VEEV challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号