首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Ceramics International》2016,42(11):13136-13143
Kinetics of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process have been studied using differential thermal analysis (DTA), X-ray diffraction, transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano beam electron diffraction (NBED) and high resolution TEM (HRTEM). The DTA result shows residual organic matter decomposed at 436 K. The transition temperature for amorphous precursor powders converted to anatase TiO2 occurred at 739 K. Moreover, the full anatase transition to rutile TiO2 occurred at 1001 K. The activation energy of anatase TiO2 formation was 128.9 kJ/mol. On the other hand, the activation energy of anatase transition to rutile TiO2 was 328.4 kJ/mol. Mesoporous structures can be observed in the TEM image.  相似文献   

2.
(In + Nb) co-doped TiO2 nanoparticles with very low dopant concentrations were prepared using a glycine nitrate process. A pure rutile—TiO2 phase with a dense microstructure and homogeneous dispersion of dopants was achieved. By doping TiO2 with 1.5% (In + Nb) ions, a very high dielectric permittivity of ε′ = 42,376 and low loss tangents of tanδ = 0.06 (at room temperature) were achieved. The large conduction activation energy at the grain boundary decreased with decreasing dopant concentration. The colossal permittivity was primarily attributed to the internal barrier layer capacitor (IBLC) effect. The dominant effect of interfacial polarization at the non–Ohmic sample–electrode contact was observed when the dopant concentration was ≤1.0 mol%. Interestingly, the sample–electrode contact and resistive–outer surface layer effects, i.e., surface barrier layer capacitor (SBLC) effect, has also an effect on the colossal dielectric response in (In + Nb) co-doped TiO2 ceramics.  相似文献   

3.
Rutile-type TiO2 (r-TiO2) or anatase-type TiO2 (a-TiO2) in association with a conventional intumescent flame retardant system which contains ammonium polyphosphate/pentaerythritol/melamine (APP–PER–MEL) was introduced to silicone-acrylate coatings to improve the fire resistance. The effect of TiO2 on the fire-resistance and thermal properties of APP–PER–MEL coating has been investigated by using big panel method and thermogravimetry (TG). The limit of fire-resistance of the sample containing 30 phr rutile-type TiO2 (73 min) is much longer than that of the sample containing 30 phr anatase-type TiO2 (34 min). The morphology and structure of charring layers were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The relationship between charring process and melt flow rate (MFR) of silicone-acrylate was also discussed. It is suggested that MFR value can significantly affect the formation of char, and a moderate silicone-acrylate MFR is required to form good quality char.  相似文献   

4.
TiO2 doped with various loadings of nitrogen was prepared by nitridation of a nano-TiO2 powder in an ammonia/argon atmosphere at a range of temperatures from 400 to 1100 °C. The nano-TiO2 starting powder was produced in a continuous hydrothermal flow synthesis (CHFS) process involving reaction between a flow of supercritical water and an aqueous solution of a titanium salt. The structures of the resulting nanocatalysts were investigated using powder X-ray diffraction (XRD) and Raman spectroscopy. Products ranging from N-doped anatase TiO2 to phase-pure titanium nitride (TiN) were obtained depending on post-synthesis heat-treatment temperature. The results suggest that TiN started forming when the TiO2 was heat-treated at 800 °C, and that pure phase TiN was obtained at 1000 °C after 5 h nitridation. The amounts and nature of the Ti, O and N at the surface were determined by X-ray photoelectron spectroscopy (XPS). A shift of the band-gap to lower energy and increasing absorption in the visible light region, were observed by increasing the heat-treatment temperature from 400 to 700 °C.  相似文献   

5.
《Ceramics International》2016,42(8):9796-9803
The improved photocatalyst carbon-doped WO3/TiO2 mixed oxide was synthesized in this study using the sol–gel method. The catalyst was thoroughly characterized by X-ray diffraction (XRD), diffuse reflectance UV–vis spectroscopy, N2 adsorption desorption analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic efficiency of the prepared materials was evaluated with respect to the degradation of sodium diclofenac (DCF) in a batch reactor irradiated under simulated solar light. The progress of the degradation process of the drug was evaluated by high-performance liquid chromatography (HPLC), whereas mineralization was monitored by total organic carbon analysis (TOC) and ion chromatography (IC). The results of the photocatalytic evaluation indicated that the modified catalyst with tungsten and carbon (TWC) exhibited higher photocatalytic activity than TiO2 (T) and WO3/TiO2 (TW) in the degradation and mineralization of diclofenac (TWC>TW>T). Complete degradation of diclofenac occurred at 250 kJ m−2 of accumulated energy, whereas 82.4% mineralization at 400 kJ m−2 was achieved using the photocatalytic system WO3/TiO2-C. The improvement in the photocatalytic activity was attributed to the synergistic effect between carbon and WO3 incorporated into the TiO2 structure.  相似文献   

6.
《Applied Clay Science》2008,38(3-4):275-280
Ag–TiO2/montmorillonite (Ag–TiO2/MMT) was synthesized as photocatalyst using TiCl4 hydrolysis to introduce nanosized TiO2 into the interlayer space of the montmorillonite (MMT). Stable pillared TiO2/MMT was obtained by calcination at 500 °C, then silver was loaded by reduction of silver nitrate. The physico–chemical properties of the photocatalyst were determined by X-ray diffraction (XRD), infrared spectroscopy (IR), atomic absorption spectrophotometer (AAS), nitrogen gas adsorption (BET method) and UV–Visible spectra. The photooxidation activity for methylene blue (M.B.) degradation was as follows: Ag–TiO2/MMT > TiO2/MMT > TiO2(P25). Among them Ag–TiO2/MMT had the highest photooxidation activity because of its larger specific surface caused by pillaring and loading of silver for improving its light absorption.  相似文献   

7.
Graphene film decorated TiO2 nano-tube array (GF/TiO2 NTA) photoelectrodes were prepared through anodization, followed by electrodeposition strategy. Morphologies and structures of the resulting GF/TiO2 NTA samples were characterized by scanning electrons microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. In addition, the optical and photoelectrochemical properties were investigated through UV–visible light diffuse reflection spectroscopy, photocurrent response and Mott–Schottky analysis. Furthermore, the photodecomposition performances were investigated through yield of hydroxyl radicals and photocatalytic (PC) degradation of methyl blue (MB) under visible light irradiation. It was found that GF/TiO2 NTA photoelectrode exhibited intense light absorption both in UV light and visible region, higher transient photoinduced current of 0.107 mA cm−2 and charge carrier concentration of 0.84 × 1019 cm−3, as well as effective PC performance of 65.9% for the degradation of MB. Furthermore, contribution of several reactive species to the PC efficiency of GF/TiO2 NTA photoelectrode was distinguished. Moreover, the enhanced visible light PC mechanism was proposed and confirmed in detail.  相似文献   

8.
《Ceramics International》2007,33(6):1105-1109
Stoichiometric and monophasic Ba1−xSrxTiO3 (x = 0.3) nanopowders were successfully prepared by the citric acid gel method using barium nitrate, strontium nitrate and tetra-n-butyl titanate as Ba, Sr, Ti sources and citric acid as complexing reagent. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), infrared (IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the thermal decomposition behavior, the crystallization process and the particle size and morphology of the calcined powders. The results indicated that single-phase and well-crystallized Ba1−xSrxTiO3 (x = 0.3) nanopowders with particle size around 80 nm could be obtained after calcining the dried gel at 950 °C for 2 h.  相似文献   

9.
Copper or cobalt incorporated TiO2 supported ZSM-5 catalysts were prepared by a sol–gel method, and then were characterized by XRD, BET, XPS and UV–vis diffuse reflectance spectroscopy. Ti3 + was the main titanium specie in TiO2/ZSM-5 and Cu–TiO2/ZSM-5, which will be oxide to Ti4 + after Co was doped. With the deposition of Cu or Co, the efficiency of the CO2 conversion to CH3OH was increased under low energy irradiation. The peak production rate of CH3OH reached 50.05 and 35.12 μmol g 1 h 1, respectively. High photo energy efficiency (PEE) and quantum yield (φ) were also reached. The mechanism was discussed in our study.  相似文献   

10.
《Ceramics International》2015,41(8):9593-9601
Pure holmium oxide ceramic nanostructures were prepared via a new simple approach. Nanostructures were synthesized by heat treatment in air at 600 °C for 5 h, utilizing [Ho L(NO3)2]NO3 (L=bis-(2-hydroxy-1-naphthaldehyde)-butanediamine Schiff base ligand), as precursor, which was prepared via a solvent-free solid–solid reaction from different molar ratios of holmium nitrate and Schiff base ligand. The as-prepared nanostructures were characterized by field emission scanning electron microscopy (FESEM), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), energy dispersive X-ray microanalysis (EDX), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. It was found that the calcination temperature and molar ratio of holmium nitrate and Schiff base ligand have significant and key effect on the morphology and particle size of the holmium oxide. To investigate the catalytic properties of as-obtained holmium oxide nanostructures, the photocatalytic degradation of rhodamine B as cationic dye under ultraviolet light irradiation was performed.  相似文献   

11.
The synergic effect of cation doping and phase composition for the further improvement of the photocatalytic activity of TiO2 under visible light is reported for the first time. Fe3 + and Sn4 + co-doped TiO2 with optimized phase composition were synthesized through a simple soft-chemical solution method. The visible-light-driven photocatalytic activity of Fe3 + and Sn4 + co-doped TiO2 was 5 times of that of Evonik P25 TiO2 using degradation of methylene blue as model reaction. The synthesized photocatalysts were characterized by powder X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, 119Sn Mössbauer spectroscopy, and X-ray absorption fine structure spectroscopy. It is indicated that Sn4 + doping can facilitate the phase transition from anatase to rutile. The different ratios of anatase and rutile can be achieved by tuning the amount of Sn4 + doped into the lattice. Furthermore, the doping of Sn4 + into TiO2 lattice can stabilize the phase composition when Fe3 + is co-doped. In the Fe3 + and Sn4 + co-doped TiO2, Sn4 + is mainly used to tune and stabilize the phase composition of TiO2 and Fe3 + acts as a doping cation to narrow the band gap of TiO2. Both band gap and phase composition of TiO2 can be tuned effectively by the simultaneous introduction of Fe3 + and Sn4 +. The synergic effect of optimized phase composition (anatase/rutile = 25/75) and narrowed band gap should be the two main reasons for the promoted photocatalytic activity of TiO2 under visible light.  相似文献   

12.
CaxCu3Ti4O12 (x = 0.90, 0.97, 1.0, 1.1 and 1.15) polycrystalline powders with variation in calcium content were prepared via the oxalate precursor route. The structural, morphological and dielectric properties of the ceramics fabricated using these powders were studied using X-ray diffraction, scanning electron microscope along with energy dispersive X-ray analysis, transmission electron microscopy, electron spin resonance (ESR) spectroscopy and impedance analyzer. The X-ray diffraction patterns obtained for the x = 0.97, 1.0 and 1.1 powdered ceramics could be indexed to a body-centered cubic perovskite related structure associated with the space group Im3. The ESR studies confirmed the absence of oxygen vacancies in the ceramics that were prepared using the oxalate precursor route. The dielectric properties of these suggest that the calcium deficient sample (x = 0.97) has a reduced dielectric loss while retaining the high dielectric constant which is of significant industrial relevance.  相似文献   

13.
《Ceramics International》2017,43(4):3797-3803
High surface area cobalt ferrite (CoFe2O4) powders were synthesized by solution combustion method. The dependence of the adiabatic temperature and the released gases during combustion reaction on the fuel content and cobalt precursor type, cobalt nitrate and cobalt acetate, was thermodynamically calculated. Thermal analysis, infrared spectroscopy, X-ray diffractometry, nitrogen adsorption–desorption, electron microscopy and vibrating sample magnetometer were used for investigation of the phase evolution, surface areas, morphology and magnetic properties of the synthesized CoFe2O4 powders. The specific surface area decreased from 285.4 to 35.7 m2/g with increasing of fuel to oxidant molar ratio, ϕ, from 0.5 to 1.25 for the cobalt nitrate precursor, while the maximum surface area of 182.1 m2/g was attained at ϕ=1 for the cobalt acetate precursor. The synthesized CoFe2O4 powders from the cobalt nitrate precursor exhibited the higher saturation magnetization and coercivity on account of the higher purity and crystallinity.  相似文献   

14.
《Ceramics International》2016,42(7):8038-8043
A rutile titanium dioxide nanostar over nanorods is synthesized by a simple and cost-effective hydrothermal deposition method onto conducting glass substrates. In order to study the effect of precursor concentrations on the growth of TiO2, the amount of Ti precursor is varied from 0.1 mL to 0.5 mL at the interval of 0.1 mL. These TiO2 thin films are characterized for their morphological, structural, optical and JV properties using various characterization techniques. SEM images showed the formation of densely packed nanostars over nanorods for 0.3 mL titanium tetraisopropoxide (TTIP). XRD patterns show the formation of polycrystalline TiO2 with tetragonal crystal structure possessing rutile phase. Further, the TiO2 thin films are used for dye sensitized solar cells using N3-dye.The films were photoelectrochemically active and can be viewed as a promising application in DSSC with maximum current density of 1.459 mA/cm2 with enhanced photovoltage of 696 mV for the sample prepared at 0.3 mL TTIP.  相似文献   

15.
In the present study, the effect of TiO2 doping on (1 ? x) Bi2O3 (x)TiO2 (x = 0.05, 0.10, 0.15, 0.20) materials is investigated using X-ray diffraction (XRD), differential thermal analysis (DTA), ac conductivity, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). XRD results show the formation of single phase Bi12TiO20 at x  0.15 concentration of TiO2. It is observed that, the lower concentration of TiO2 leads to the formation of mixed phase. The x = 0.15 and x = 0.20 samples exhibit regular and uniform distribution of the grains as compared to x = 0.10 sample. The highest conductivity is observed for x = 0.15 specimen, e.g., 9 × 10?7 S cm?1.  相似文献   

16.
Donor–π-bridge–acceptor (D–π–A) type polyoxometalates (POMs) were self-assembled for the first time on the surface of titanium dioxide (TiO2) nanoparticles through the layer-by-layer (LBL) method. The obtained composite materials POM@TiO2 were characterized by Transmission electron microscopy (TEM), Fourier transform IR spectroscopy (FTIR), Raman spectrum and energy dispersive X-ray (EDX) spectroscopy. Catalytic properties of POM@TiO2 were also investigated by treating organic pollutants (typically, removal of 40 mL 20 mg L 1 methylene blue (MB) by 10 mg POM@TiO2 was up to 99.5% within 3 min under ambient conditions and the photodegradation efficiency was obviously higher than bare TiO2 nanoparticles under irradiation).  相似文献   

17.
A new nanocomposite containing a titanium dioxide photocatalyst and low-cost sepiolite was prepared and tested for its potential multifunctional application in water vapor adsorption and pollutant photodegradation. The nanocomposite was characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), thermogravimetric and differential thermogravimetric analyses (TGA/DTG), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and surface area (BET) measurements. The XRD patterns of the nanocomposites exhibited the characteristic sepiolite and anatase reflections, while the SEM images revealed the surface morphology of the raw sepiolite after the modification with the sol gel prepared with TiO2. In the TGA/DTG, up to 100 °C, three stages of water removal were analyzed and attributed to surface and zeolitic water loss. Upon TiO2 loading, the overall mass loss of sepiolite was reduced to half, but the three stages of water loss were rearranged with low loading (10 wt.%) or were reduced to two stages with higher loading (20 wt.%). The hydrophilic nature of the raw sepiolite was retained after the TiO2 loading, while the water vapor uptake was reduced to 20–30% with relative humidities from 30 to 80% and loadings up to 20 wt.%. In addition, the efficiencies of the supported photocatalysts were investigated using β-naphthol as a model pollutant compound. All prepared catalysts exhibited higher activities than when using the bare TiO2 sample. Therefore, the TiO2–sepiolite nanocomposite can be potentially applied for combined photocatalytic degradation processes and water vapor adsorption to allow for evaporative cooling.  相似文献   

18.
《Ceramics International》2017,43(16):13677-13682
This work explores a new route for the synthesis of titanium dioxide using scraps and titanium chips, which are typically discarded as waste, as the precursor materials. The band-gap energy of the synthesised materials was determined using diffuse reflectance spectroscopy. The morphology, elemental analysis, crystallinity, and chemical structure of the synthesised materials were determined by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, and infrared and Raman spectroscopies, respectively. The X-ray and Raman analyses confirmed the formation of titanium dioxide in its tetragonal (anatase) crystalline form after heat treatment (400 °C, 2 h). Moreover, a mixture of (NH4)0,3TiO1,1F2,1 and anatase TiO2 was obtained as a by-product. After heat treatment, this by-product was converted into fluorine-doped titanium dioxide, also in anatase crystalline form. The apparent crystallite size (Lc) of anhydrous titanium dioxide was found to be smaller than that of the calcined by-product. The diffuse reflectance spectroscopy analysis revealed that the calcined by-product has a significantly higher absorption capacity at higher wavelengths, as well as a lower band-gap energy value. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) analyses showed large particulates on which smaller particles are deposited and good dispersion of the elemental components. The anhydrous titanium dioxide sample presents a smaller particle size than the calcined by-product.  相似文献   

19.
Magnesium aluminate spinel (MgAl2O4) spinel powder was synthesized by nitrate citrate auto-ignition route taking different ratios of nitrate and citrate solution. The ‘as prepared’ black ash was calcined at different temperatures in the range 650–1250 °C for 9 h. Phase evolution of calcined powder samples as studied by X-ray diffraction indicates the presence of disorder at lower calcination temperatures, which transforms to an ordered structure at higher calcination temperatures. Finally, Raman spectroscopy confirms the order–disorder phase transition in spinel sample.  相似文献   

20.
A series of photo-catalysts were synthesized by neodymium and fluorine doped TiO2, and their characteristics evaluated by X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (UV–vis), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Neodymium and fluorine doped TiO2 has obvious absorption in the visible light and the absorption edge shifts toward red wavelength. In addition, compared with pure TiO2, the doped catalyst has intense absorption at 528, 587, 750, 808, and 881 nm. The catalytic efficiency was tested by monitoring the photo-catalytic degradation of methylene blue (MB) in visible light and ultraviolet light. The results showed that the optimum doping content was Nd:F:TiO2 = 0.5:5:100 (molar ratio) heat treated at 500 °C, and the reaction rates of MB degradation were estimated to be about 1.76 times and 1.45 times higher than undoped TiO2 in ultraviolet light and visible light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号