首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ploidy affects plant growth vigor and cell size, but the relative effects of pollen fertility and allergenicity between triploid and diploid have not been systematically examined. Here we performed comparative analyses of fertility, proteome, and abundances of putative allergenic proteins of pollen in triploid poplar ‘ZhongHuai1’ (‘ZH1’, triploid) and ‘ZhongHuai2’ (‘ZH2’, diploid) generated from the same parents. The mature pollen was sterile in triploid poplar ‘ZH1’. By applying two-dimensional gel electrophoresis (2-DE), a total of 72 differentially expressed protein spots (DEPs) were detected in triploid poplar pollen. Among them, 24 upregulated and 43 downregulated proteins were identified in triploid poplar pollen using matrix-assisted laser desorption/ionisation coupled with time of-flight tandem mass spectrometer analysis (MALDI-TOF/TOF MS/MS). The main functions of these DEPs were related with “S-adenosylmethionine metabolism”, “actin cytoskeleton organization”, or “translational elongation”. The infertility of triploid poplar pollen might be related to its abnormal cytoskeletal system. In addition, the abundances of previously identified 28 putative allergenic proteins were compared among three poplar varieties (‘ZH1’, ‘ZH2’, and ‘2KEN8‘). Most putative allergenic proteins were downregulated in triploid poplar pollen. This work provides an insight into understanding the protein regulation mechanism of pollen infertility and low allergenicity in triploid poplar, and gives a clue to improving poplar polyploidy breeding and decreasing the pollen allergenicity.  相似文献   

2.
RNA-binding proteins are crucial to the function of coding and non-coding RNAs. The disruption of RNA–protein interactions is involved in many different pathological states. Several computational and experimental strategies have been developed to identify protein binders of selected RNA molecules. Amongst these, ‘in cell’ hybridization methods represent the gold standard in the field because they are designed to reveal the proteins bound to specific RNAs in a cellular context. Here, we compare the technical features of different ‘in cell’ hybridization approaches with a focus on their advantages, limitations, and current and potential future applications.  相似文献   

3.
Our understanding of the structure–function relationships of biomolecules and thereby applying it to drug discovery programs are substantially dependent on the availability of the structural information of ligand–protein complexes. However, the correct interpretation of the electron density of a small molecule bound to a crystal structure of a macromolecule is not trivial. Our analysis involving quality assessment of ~0.28 million small molecule–protein binding site pairs derived from crystal structures corresponding to ~66,000 PDB entries indicates that the majority (65%) of the pairs might need little (54%) or no (11%) attention. Out of the remaining 35% of pairs that need attention, 11% of the pairs (including structures with high/moderate resolution) pose serious concerns. Unfortunately, most users of crystal structures lack the training to evaluate the quality of a crystal structure against its experimental data and, in general, rely on the resolution as a ‘gold standard’ quality metric. Our work aims to sensitize the non-crystallographers that resolution, which is a global quality metric, need not be an accurate indicator of local structural quality. In this article, we demonstrate the use of several freely available tools that quantify local structural quality and are easy to use from a non-crystallographer’s perspective. We further propose a few solutions for consideration by the scientific community to promote quality research in structural biology and applied areas.  相似文献   

4.
Liquid chromatography coupled with mass spectrometry is an outstanding methodology for fast analysis of phenolic compounds in biological samples. Twenty two compounds were quickly and accurately identified in the methanolic extract of the Antarctic lichen Ramalina terebrata for the first time using ultra high pressure liquid chromatography coupled with photodiode array detector and high resolution mass spectrometry (UHPLC-PDA-Q/Orbitrap/MS/MS). In addition, the extract and the four compounds isolated from this species were tested for the inhibitory activity of tau protein aggregation, which is a protein involved in Alzheimer’s disease (AD). All compounds showed null activity with the exception of parietin, which it was able to inhibit aggregation process of tau in a concentration range between 3 µg/mL (10 µM) to 28 µg/mL (100 µM). In addition, we show how parietin interact with tau 306VQIVYK311 hexapeptide inside of the microtubule binding domain (4R) with the help of molecular docking experiments. Finally, the constituents present in the methanolic extract could possibly contribute to the established anti-aggregation activity for this extract and this in-depth analysis of the chemical composition of R. terebrata could guide further research into its medicinal properties and potential uses.  相似文献   

5.
6.
We present phonon thermal conductance calculations for silicon nanowires (SiNWs) with diameters ranging from 1 to 5 nm with and without vacancy defects by the non-equilibrium Green’s function technique using the interatomic Tersoff-Brenner potentials. For the comparison, we also present phonon thermal conductance calculations for diamond nanowires. For two types of vacancy defects in the SiNW, a ‘center defect’ and a ‘surface defect’, we found that a center-defect reduces thermal conductance much more than a surface defect. We also found that the thermal conductance changes its character from the usual behavior, in proportion to the square of diameter (the cross-sectional area) for over 100 and 300 K, to the unusual one, not dependent on its diameter at all at low temperature. The crossover is attributed to the quantization of thermal conductance.  相似文献   

7.
Wilms’ tumor is one of the most common malignant tumors observed in children, and its early diagnosis is important for late-stage treatment and prognosis. We previously screened and identified protein markers for Wilms’ tumor; however, these markers lacked specificity, and some were associated with inflammation. In the current study, serum samples from children with Wilms’ tumors were compared with those of healthy controls and patients with systemic inflammatory response syndrome (SIRS). After exclusion of factors associated with inflammation, specific protein markers for Wilms’ tumors were identified. After comparing the protein peak values obtained from all three groups, a protein with a m/z of 6438 Da was specified. Purification and identification of the target protein using high-pressure liquid chromatography (HPLC) and two-dimensional liquid chromatography-linearion trap mass spectrometry(2D-LC-LTQ-MS) mass spectrometry, respectively, revealed that it was apolipoprotein C-I (APO C-I). Thus, APO C-I is a specific protein marker for Wilms’ tumor.  相似文献   

8.
Earthworms can ‘biotransform’ or ‘biodegrade’ chemical contaminants, rendering them harmless in their bodies, and can bioaccumulate them in their tissues. They ‘absorb’ the dissolved chemicals through their moist ‘body wall’ due to the interstitial water and also ingest by ‘mouth’ while soil passes through the gut. Since the advent of the nanotechnology era, the environmental sink has been continuously receiving engineered nanomaterials as well as their derivatives. Our current understanding of the potential impact of nanomaterials and their natural scavenger is limited. In the present investigation, we studied the cellular uptake of ZnO nanoparticles (NPs) by coelomocytes especially by chloragocytes of Eisenia fetida and their role as nanoscavenger. Results from exposure to 100- and 50-nm ZnO NPs indicate that coelomocytes of the earthworm E. fetida show no significant DNA damage at a dose lower than 3 mg/l and have the potential ability to uptake ZnO NPs from the soil ecosystem and transform them into microparticles.  相似文献   

9.
Protein–protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8–Met78). The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr). The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis) to map the protein-protein interface or regions with a flexible structure.  相似文献   

10.
Keratohyalin granules were discovered in the mid-19th century in cells that terminally differentiate to form the outer, cornified layer of the epidermis. The first indications of the composition of these structures emerged in the 1960s from a histochemical stain for histidine, followed by radioautographic evidence of a high incidence of histidine incorporation into newly synthesized proteins in cells containing the granules. Research during the next three decades revealed the structure and function of a major protein in these granules, which was initially called the ‘histidine-rich protein’. Steinert and Dale named the protein ‘filaggrin’ in 1981 because of its ability to aggregate keratin intermediate filaments. The human gene for the precursor, ‘profilaggrin,’ was reported in 1991 to encode 10, 11 or 12 nearly identical repeats. Remarkably, the mouse and rat genes encode up to 20 repeats. The lifetime of filaggrin is the time required for keratinocytes in the granular layer to move into the inner cornified layer. During this transition, filaggrin facilitates the collapse of corneocytes into ‘building blocks’ that become an impermeable surface barrier. The subsequent degradation of filaggrin is as remarkable as its synthesis, and the end-products aid in maintaining moisture in the cornified layer. It was apparent that ichthyosis vulgaris and atopic dermatitis were associated with the absence of this protein. McLean’s team in 2006 identified the cause of these diseases by discovering loss-of-function mutations in the profilaggrin gene, which led to dysfunction of the surface barrier. This story illustrates the complexity in maintaining a healthy, functional epidermis.  相似文献   

11.
12.
The low-molecular weight glutenin subunit (LMW-GS) composition of wheat (Triticum aestivum) flour has important effects on end-use quality. However, assessing the contributions of each LMW-GS to flour quality remains challenging because of the complex LMW-GS composition and allelic variation among wheat cultivars. Therefore, accurate and reliable determination of LMW-GS alleles in germplasm remains an important challenge for wheat breeding. In this study, we used an optimized reversed-phase HPLC method and proteomics approach comprising 2-D gels coupled with liquid chromatography–tandem mass spectrometry (MS/MS) to discriminate individual LMW-GSs corresponding to alleles encoded by the Glu-A3, Glu-B3, and Glu-D3 loci in the ‘Aroona’ cultivar and 12 ‘Aroona’ near-isogenic lines (ARILs), which contain unique LMW-GS alleles in the same genetic background. The LMW-GS separation patterns for ‘Aroona’ and ARILs on chromatograms and 2-D gels were consistent with those from a set of 10 standard wheat cultivars for Glu-3. Furthermore, 12 previously uncharacterized spots in ‘Aroona’ and ARILs were excised from 2-D gels, digested with chymotrypsin, and subjected to MS/MS. We identified their gene haplotypes and created a 2-D gel map of LMW-GS alleles in the germplasm for breeding and screening for desirable LMW-GS alleles for wheat quality improvement.  相似文献   

13.
This review focuses on recent findings in the preimplantation genetic testing (PGT) of embryos. Different preimplantation genetic tests are presented along with different genetic materials and their analysis. Original material concerning preimplantation genetic testing for aneuploidy (PGT-A) was sourced by searching the PubMed and ScienceDirect databases in October and November 2021. The searches comprised keywords such as ‘preimplantation’, ‘cfDNA’; ‘miRNA’, ‘PGT-A’, ‘niPGT-A’, ‘aneuploidy’, ‘mosaicism’, ‘blastocyst biopsy’, ‘blastocentesis’, ‘blastocoel fluid’, ‘NGS’, ‘FISH’, and ‘aCGH’. Non-invasive PGT-A (niPGT-A) is a novel approach to the genetic analysis of embryos. The premise is that the genetic material in the spent embryo culture media (SECM) corresponds to the genetic material in the embryo cells. The limitations of niPGT-A are a lower quantity and lesser quality of the cell-free genetic material, and its unknown origin. The concordance rate varies when compared to invasive PGT-A. Some authors have also hypothesized that mosaicism and aneuploid cells are preferentially excluded from the embryo during early development. Cell-free genetic material is readily available in the spent embryo culture media, which provides an easier, more economic, and safer extraction of genetic material for analysis. The sampling of the SECM and DNA extraction and amplification must be optimized. The origin of the cell-free media, the percentage of apoptotic events, and the levels of DNA contamination are currently unknown; these topics need to be further investigated.  相似文献   

14.
15.
16.
17.
Leaf coloration changes evoke different photosynthetic responses among different poplar cultivars. The aim of this study is to investigate the photosynthetic difference between a red leaf cultivar (ZHP) and a green leaf (L2025) cultivar of Populus deltoides. In this study, ‘ZHP’ exhibited wide ranges and huge potential for absorption and utilization of light energy and CO2 concentration which were similar to those in ‘L2025’ and even showed a stronger absorption for weak light. However, with the increasing light intensity and CO2 concentration, the photosynthetic capacity in both ‘L2025’ and ‘ZHP’ was gradually restricted, and the net photosynthetic rate (Pn) in ‘ZHP’ was significantly lower than that in ‘L2025’under high light or high CO2 conditions, which was mainly attributed to stomatal regulation and different photosynthetic efficiency (including the light energy utilization efficiency and photosynthetic CO2 assimilation efficiency) in these two poplars. Moreover, the higher anthocyanin content in ‘ZHP’ than that in ‘L2025’ was considered to be closely related to the decreased photosynthetic efficiency in ‘ZHP’. According to the results from the JIP-test, the capture efficiency of the reaction center for light energy in ‘L2025’ was significantly higher than that in ‘ZHP’. Interestingly, the higher levels of light quantum caused relatively higher accumulation of QA- in ‘L2025’, which blocked the electron transport and weakened the photosystem II (PSII) performance as compared with ‘ZHP’; however, the decreased capture of light quantum also could not promote the utilization of light energy, which was the key to the low photosynthetic efficiency in ‘ZHP’. The differential expressions of a series of photosynthesis-related genes further promoted these specific photosynthetic processes between ‘L2025’ and ‘ZHP’.  相似文献   

18.
Branch angle is a key shoot architecture trait that strongly influences the ornamental and economic value of garden plants. However, the mechanism underlying the control of branch angle, an important aspect of tree architecture, is far from clear in roses. In the present study, we isolated the RrLAZY1 gene from the stems of Rosa rugosa ‘Zilong wochi’. Sequence analysis showed that the encoded RrLAZY1 protein contained a conserved GΦL (A/T) IGT domain, which belongs to the IGT family. Quantitative real-time PCR (qRT-PCR) analyses revealed that RrLAZY1 was expressed in all tissues and that expression was highest in the stem. The RrLAZY1 protein was localized in the plasma membrane. Based on a yeast two-hybrid assay and bimolecular fluorescence complementation experiments, the RrLAZY1 protein was found to interact with auxin-related proteins RrIAA16. The over-expression of the RrLAZY1 gene displayed a smaller branch angle in transgenic Arabidopsis inflorescence and resulted in changes in the expression level of genes related to auxin polar transport and signal transduction pathways. This study represents the first systematic analysis of the LAZY1 gene family in R. rugosa. The results of this study will provide a theoretical basis for the improvement of rose plant types and molecular breeding and provide valuable information for studying the regulation mechanism of branch angle in other woody plants.  相似文献   

19.
The color of bracts generally turns yellow or black from green during cereal grain development. However, the impact of these phenotypic changes on photosynthetic physiology during black bract formation remains unclear. Two oat cultivars (Avena sativa L.), ‘Triple Crown’ and ‘Qinghai 444’, with yellow and black bracts, respectively, were found to both have green bracts at the heading stage, but started to turn black at the flowering stage and become blackened at the milk stage for ‘Qinghai 444’. Their photosynthetic characteristics were analyzed and compared, and the key genes, proteins and regulatory pathways affecting photosynthetic physiology were determined in ‘Triple Crown’ and ‘Qinghai 444’ bracts. The results show that the actual PSII photochemical efficiency and PSII electron transfer rate of ‘Qinghai 444’ bracts had no significant changes at the heading and milk stages but decreased significantly (p < 0.05) at the flowering stage compared with ‘Triple Crown’. The chlorophyll content decreased, the LHCII involved in the assembly of supercomplexes in the thylakoid membrane was inhibited, and the expression of Lhcb1 and Lhcb5 was downregulated at the flowering stage. During this critical stage, the expression of Bh4 and C4H was upregulated, and the biosynthetic pathway of p-coumaric acid using tyrosine and phenylalanine as precursors was also enhanced. Moreover, the key upregulated genes (CHS, CHI and F3H) of anthocyanin biosynthesis might complement the impaired PSII activity until recovered at the milk stage. These findings provide a new insight into how photosynthesis alters during the process of oat bract color transition to black.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号