首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G L Westbrook  M L Mayer 《Nature》1987,328(6131):640-643
NMDA (N-methyl-D-aspartate) receptors serve as modulators of synaptic transmission in the mammalian central nervous system (CNS) with both short-term and long-lasting effects. Divalent cations are pivotal in determining this behaviour in that Mg2+ blocks the ion channel in a voltage-dependent manner, and Ca2+ permeates NMDA channels. Zn2+ could also modulate neuronal excitability because it is present at high concentrations in brain, especially the synaptic vesicles of mossy fibers in the hippocampus and is released with neuronal activity. Both proconvulsant and depressant actions of Zn2+ have been reported. We have found that zinc is a potent non-competitive antagonist of NMDA responses on cultured hippocampal neurons. Unlike Mg2+, the effect of Zn2+ is not voltage-sensitive between -40 and +60 mV, suggesting that Zn2+ and Mg2+ act at distinct sites. In addition, we have found that Zn2+ antagonizes responses to the inhibitory transmitter GABA (gamma-aminobutyric acid). Our results provide evidence for an additional metal-binding site on the NMDA receptor channel, and suggest that Zn2+ may regulate both excitatory and inhibitory synaptic transmission in the hippocampus.  相似文献   

2.
Acidic amino acids, such as l-glutamate, are believed to be excitatory neurotransmitters in the mammalian brain and exert effects on several different receptors named after the selective agonists kainate, quisqualate and N-methyl-D-aspartate (NMDA). The first two receptors collectively termed non-NMDA receptors, have been implicated in the mediation of synaptic transmission in many excitatory pathways in the central nervous system (CNS), whereas NMDA receptors, with few exceptions do not appear to be involved; this is typified in the hippocampus where there is a high density of NMDA receptors yet selective NMDA receptor antagonists, such as D-2-amino-5-phosphonovalerate (APV), do not affect synaptic potentials. NMDA receptors have, however, been shown to be involved in long-term potentiation (LTP) in the hippocampus, a form of synaptic plasticity which may be involved in learning and memory. NMDA receptors have also been found to contribute to epileptiform activity in this region. We now describe how NMDA receptors can participate during high-frequency synaptic transmission in the hippocampus, their involvement during low-frequency transmission being greatly suppressed by Mg2+. A frequency dependent alleviation of this blockade provides a novel synaptic mechanism whereby a single neurotransmitter can transmit very different information depending on the temporal nature of the input. This mechanism could account for the involvement of NMDA receptors in the initiation of LPT and their contribution, in part, to epileptic activity.  相似文献   

3.
T Tsumoto  K Hagihara  H Sato  Y Hata 《Nature》1987,327(6122):513-514
Acidic amino acids, such as glutamate and aspartate, are thought to be excitatory transmitters in the cerebral neocortex and hippocampus. Receptors for these amino acids can be classified into at least three types on the basis of their agonists. Quisqualate-preferring receptors and kainate-preferring receptors are implicated in the mediation of synaptic transmission in many regions including the hippocampus and visual cortex, whereas N-methyl-D-aspartate (NMDA)-preferring receptors are thought to be involved in modulating synaptic efficacy, for example in longterm potentiation, a form of synaptic plasticity in the hippocampus. In the visual cortex of the cat and monkey, it is well established that synaptic plasticity, estimated by susceptibility of binocular responsiveness of cortical neurons to monocular visual deprivation, disappears after the 'critical' period of postnatal development. Here we report that during the critical period in young kittens, a selective NMDA-receptor antagonist blocks visual responses of cortical neurons much more effectively than it does in the adult cat. This suggests that NMDA receptors may be involved in establishing synaptic plasticity in the kitten visual cortex.  相似文献   

4.
A Stelzer  N T Slater  G ten Bruggencate 《Nature》1987,326(6114):698-701
The application of tetanic electrical stimuli to the stratum radiatum fibre pathway in the hippocampus in vitro produces an NMDA (N-methyl-D-aspartate) receptor-dependent enhancement of synaptic efficacy. Repeated application of such stimuli produces a progressive enhancement of synaptic efficacy leading to the genesis of spontaneous and stimulation-evoked epileptiform discharges. We have used this in vitro approach to explore the cellular mechanisms which underlie the kindling model of epilepsy. Kindling of the stratum radiatum fibre pathway in vitro induced a progressive, long-lasting reduction of both spontaneous and stimulation-evoked GABAergic (gamma-aminobutyric acid-mediated) inhibitory postsynaptic potentials (i.p.s.ps). The reduction of i.p.s.ps by kindling was associated with a profound decrease in the sensitivity of CA1 pyramidal neurons to ionophoretically applied GABA and an increase in sensitivity to NMDA. The reduction of i.p.s.ps and GABA sensitivity was prevented by kindling in the presence of the NMDA receptor antagonist D-2-amino-5-phosphonovalerate (D-APV). These results demonstrate that kindling-like stimulus patterns produce a reduction of GABAergic inhibition in the hippocampus resulting from a stimulus-induced postsynaptic activation of NMDA receptors. The modulation of GABAergic inhibition by NMDA receptors may cause the synaptic plasticity which underlies the kindling model of epilepsy.  相似文献   

5.
Mori M  Abegg MH  Gähwiler BH  Gerber U 《Nature》2004,431(7007):453-456
The hippocampus, a brain structure essential for memory and cognition, is classically represented as a trisynaptic excitatory circuit. Recent findings challenge this view, particularly with regard to the mossy fibre input to CA3, the second synapse in the trisynaptic pathway. Thus, the powerful mossy fibre input to CA3 pyramidal cells might mediate both synaptic excitation and inhibition. Here we show, by recording from connected cell pairs in rat entorhinal-hippocampal slice cultures, that single action potentials in a dentate granule cell evoke a net inhibitory signal in a pyramidal cell. The hyperpolarization is due to disynaptic feedforward inhibition, which overwhelms monosynaptic excitation. Interestingly, this net inhibitory synaptic response changes to an excitatory signal when the frequency of presynaptic action potentials increases. The process responsible for this switch involves the facilitation of monosynaptic excitatory transmission coupled with rapid depression of inhibitory circuits. This ability to immediately switch the polarity of synaptic responses constitutes a novel synaptic mechanism, which might be crucial to the state-dependent processing of information in associative hippocampal networks.  相似文献   

6.
The modulation of voltage-dependent calcium channels by various neurotransmitters has been demonstrated in many neurons. Because of the critical role of Ca2+ in transmitter release and, more generally, in transmembrane signalling, this modulation has important functional implications. Hippocampal neurons possess low-threshold (T-type) Ca2+ channels and both L- and N-type high voltage-activated Ca2+ channels. N-type Ca2+ channels are blocked selectively by omega-conotoxin and adenosine. These substances both block excitatory synaptic transmission in the hippocampus, whereas dihydropyridines, which selectively block L-type channels, are ineffective. Excitatory synaptic transmission in the hippocampus displays a number of plasticity phenomena that are initiated by Ca2+ entry through ionic channels operated by N-methyl-D-aspartate (NMDA) receptors. Here we report that NMDA receptor agonists selectively and effectively depress N-type Ca2+ channels which are involved in neurotransmitter release from presynaptic sites. The inhibitory effect is eliminated by the competitive NMDA antagonist D-2-amino-5-phosphonovalerate, does not require Ca2+ entry into the cell, and is probably receptor-mediated. This phenomenon may provide a negative feedback between the liberation of excitatory transmitter and entry of Ca2+ into the cell, and could be important in presynaptic inhibition and in the regulation of synaptic plasticity.  相似文献   

7.
Glutamate spillover suppresses inhibition by activating presynaptic mGluRs   总被引:17,自引:0,他引:17  
Mitchell SJ  Silver RA 《Nature》2000,404(6777):498-502
Metabotropic glutamate receptors (mGluRs) found on synaptic terminals throughout the brain are thought to be important in modulating neurotransmission. Activation of mGluRs by synaptically released glutamate depresses glutamate release from excitatory terminals but the physiological role of mGluRs on inhibitory terminals is unclear. We have investigated activation of mGluRs on inhibitory terminals within the cerebellar glomerulus, a structure in which GABA (gamma-aminobutyric acid)-releasing inhibitory terminals and glutamatergic excitatory terminals are in close apposition and make axo-dendritic synapses onto granule cells. Here we show that 'spillover' of glutamate, which is released from excitatory mossy fibres, inhibits GABA release from Golgi cell terminals by activating presynaptic mGluRs under physiological conditions. The magnitude of the depression of the inhibitory postsynaptic current is dependent on the frequency of mossy fibre stimulation, reaching 50% at 100 Hz. Furthermore, the duration of inhibitory postsynaptic current depression mirrors the time course of mossy fibre activity. Our results establish that mGluRs on inhibitory interneuron axons sense the activity of neighbouring excitatory synapses. This heterosynaptic mechanism is likely to boost the efficacy of active excitatory fibres by locally reducing the level of inhibition.  相似文献   

8.
RIM1alpha is required for presynaptic long-term potentiation.   总被引:8,自引:0,他引:8  
Two main forms of long-term potentiation (LTP)-a prominent model for the cellular mechanism of learning and memory-have been distinguished in the mammalian brain. One requires activation of postsynaptic NMDA (N-methyl d-aspartate) receptors, whereas the other, called mossy fibre LTP, has a principal presynaptic component. Mossy fibre LTP is expressed in hippocampal mossy fibre synapses, cerebellar parallel fibre synapses and corticothalamic synapses, where it apparently operates by a mechanism that requires activation of protein kinase A. Thus, presynaptic substrates of protein kinase A are probably essential in mediating this form of long-term synaptic plasticity. Studies of knockout mice have shown that the synaptic vesicle protein Rab3A is required for mossy fibre LTP, but the protein kinase A substrates rabphilin, synapsin I and synapsin II are dispensable. Here we report that mossy fibre LTP in the hippocampus and the cerebellum is abolished in mice lacking RIM1alpha, an active zone protein that binds to Rab3A and that is also a protein kinase A substrate. Our results indicate that the long-term increase in neurotransmitter release during mossy fibre LTP may be mediated by a unitary mechanism that involves the GTP-dependent interaction of Rab3A with RIM1alpha at the interface of synaptic vesicles and the active zone.  相似文献   

9.
L Schnell  M E Schwab 《Nature》1990,343(6255):269-272
After lesions in the differentiated central nervous system (CNS) of higher vertebrates, interrupted fibre tracts do not regrow and elongate by more than an initial sprout of approximately 1 mm. Transplantations of pieces of peripheral nerves into various parts of the CNS demonstrate the widespread capability of CNS neurons to regenerate lesioned axons over long distances in a peripheral nerve environment. CNS white matter, cultured oligodendrocytes (the myelin-producing cells of the CNS), and CNS myelin itself, are strong inhibitors of neuron growth in culture, a property associated with defined myelin membrane proteins of relative molecular mass (Mr) 35,000 (NI-35) and 250,000 (NI-250). We have now intracerebrally applied the monoclonal antibody IN-1, which neutralizes the inhibitory effect of both these proteins, to young rats by implanting antibody-producing tumours. In 2-6-week-old rats we made complete transections of the cortico-spinal tract, a major fibre tract of the spinal cord, the axons of which originate in the motor and sensory neocortex. Previous studies have shown a complete absence of cortico-spinal tract regeneration after the first postnatal week in rats, and in adult hamsters and cats. In IN-1-treated rats, massive sprouting occurred at the lesion site, and fine axons and fascicles could be observed up to 7-11 mm caudal to the lesion within 2-3 weeks. In control rats, a similar sprouting reaction occurred, but the maximal distance of elongation rarely exceeded 1 mm. These results demonstrate the capacity for CNS axons to regenerate and elongate within differentiated CNS tissue after the neutralization of myelin-associated neurite growth inhibitors.  相似文献   

10.
Nugent FS  Penick EC  Kauer JA 《Nature》2007,446(7139):1086-1090
Excitatory brain synapses are strengthened or weakened in response to specific patterns of synaptic activation, and these changes in synaptic strength are thought to underlie persistent pathologies such as drug addiction, as well as learning. In contrast, there are few examples of synaptic plasticity of inhibitory GABA (gamma-aminobutyric acid)-releasing synapses. Here we report long-term potentiation of GABA(A)-mediated synaptic transmission (LTP(GABA)) onto dopamine neurons of the rat brain ventral tegmental area, a region required for the development of drug addiction. This novel form of LTP is heterosynaptic, requiring postsynaptic NMDA (N-methyl-d-aspartate) receptor activation at glutamate synapses, but resulting from increased GABA release at neighbouring inhibitory nerve terminals. NMDA receptor activation produces nitric oxide, a retrograde signal released from the postsynaptic dopamine neuron. Nitric oxide initiates LTP(GABA) by activating guanylate cyclase in GABA-releasing nerve terminals. Exposure to morphine both in vitro and in vivo prevents LTP(GABA). Whereas brief treatment with morphine in vitro blocks LTP(GABA) by inhibiting presynaptic glutamate release, in vivo exposure to morphine persistently interrupts signalling from nitric oxide to guanylate cyclase. These neuroadaptations to opioid drugs might contribute to early stages of addiction, and may potentially be exploited therapeutically using drugs targeting GABA(A) receptors.  相似文献   

11.
Pertussis toxin reverses adenosine inhibition of neuronal glutamate release   总被引:14,自引:0,他引:14  
A C Dolphin  S A Prestwich 《Nature》1985,316(6024):148-150
Adenosine and its analogues are potent inhibitors of synaptic activity in the central and peripheral nervous system. In the central nervous system (CNS), this appears to arise primarily by inhibition of presynaptic release of transmitters, including glutamate, which is possibly the major excitatory transmitter in the brain. In addition, postsynaptic effects of adenosine have been reported which would also serve to reduce neurotransmission. The mechanism by which adenosine inhibits CNS neurotransmission is unknown, although it appears to exert its effect via an A1 receptor which in some systems is negatively coupled to adenylate cyclase. In an attempt to elucidate the mechanism of inhibition, we have examined the effect of pertussis toxin (PTX) on the ability of the stable adenosine analogue (-)phenylisopropyladenosine (PIA) to inhibit glutamate release from cerebellar neurones maintained in primary culture. PTX, by ADP-ribosylating the nucleotide-binding protein Ni, prevents coupling of inhibitory receptors such as the A1 receptor to adenylate cyclase. As reported here, we found that PTX, as well as preventing inhibition of adenylate cyclase by PIA, also converts the PIA-induced inhibition of glutamate release to a stimulation. Our results suggest strongly that purinergic inhibitory modulation of transmitter release occurs by inhibition of adenylate cyclase.  相似文献   

12.
P J Richardson  S J Brown  E M Bailyes  J P Luzio 《Nature》1987,327(6119):232-234
One of the most important inhibitory modulators of synaptic transmission in mammalian brain is adenosine. At some cholinergic terminals, adenosine is known to inhibit further release of acetylcholine. It is unclear whether adenosine is released directly at the synapse or whether ATP is co-released with transmitter and hydrolysed to adenosine in the synaptic cleft. Methods used in the past for isolating nerve terminals have not yielded homogeneous preparations, making it impossible to determine whether sufficient ATP or adenosine is released at specific synapses for inhibition of transmitter release to occur. Immunoaffinity purification techniques have recently permitted the preparation of homogeneous populations of cholinergic nerve terminals, which release ATP upon stimulation. We now report that in immunoisolated cholinergic nerve terminals from the striatum synaptic ectophosphohydrolases convert this ATP to adenosine, which inhibits further acetylcholine release, but this inhibitory effect is not seen in cortical cholinergic terminals lacking the complete ectophosphohydrolase pathway. Therefore the differing adenosine-mediated modulation in different brain areas is controlled by the presence and activity of synaptic ectophosphohydrolases.  相似文献   

13.
Neurotransmission at most excitatory synapses in the brain operates through two types of glutamate receptor termed alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors; these mediate the fast and slow components of excitatory postsynaptic potentials respectively. Activation of NMDA receptors can also lead to a long-lasting modification in synaptic efficiency at glutamatergic synapses; this is exemplified in the CA1 region of the hippocampus, where NMDA receptors mediate the induction of long-term potentiation (LTP). It is believed that in this region LTP is maintained by a specific increase in the AMPA receptor-mediated component of synaptic transmission. We now report, however, that a pharmacologically isolated NMDA receptor-mediated synaptic response can undergo robust, synapse-specific LTP. This finding has implications for neuropathologies such as epilepsy and neurodegeneration, in which excessive NMDA receptor activation has been implicated. It adds fundamentally to theories of synaptic plasticity because NMDA receptor activation may, in addition to causing increased synaptic efficiency, directly alter the plasticity of synapses.  相似文献   

14.
GABA autoreceptors regulate the induction of LTP.   总被引:19,自引:0,他引:19  
Understanding the mechanisms involved in long-term potentiation (LTP) should provide insights into the cellular and molecular basis of learning and memory in vertebrates. It has been established that in the CA1 region of the hippocampus the induction of LTP requires the transient activation of the N-methyl-D-aspartate (NMDA) receptor system. During low-frequency transmission, significant activation of this system is prevented by gamma-aminobutyric acid (GABA) mediated synaptic inhibition which hyperpolarizes neurons into a region where NMDA receptor-operated channels are substantially blocked by Mg2+ (refs. 5, 6). But during high-frequency transmission, mechanisms are evoked that provide sufficient depolarization of the postsynaptic membrane to reduce this block and thereby permit the induction of LTP. We now report that this critical depolarization is enabled because during high-frequency transmission GABA depresses its own release by an action on GABAB autoreceptors, which permits sufficient NMDA receptor activation for the induction of LTP. These findings demonstrate a role for GABAB receptors in synaptic plasticity.  相似文献   

15.
Z F Mainen  R Malinow  K Svoboda 《Nature》1999,399(6732):151-155
At excitatory synapses in the central nervous system, the number of glutamate molecules released from a vesicle is much larger than the number of postsynaptic receptors. But does release of a single vesicle normally saturate these receptors? Answering this question is critical to understanding how the amplitude and variability of synaptic transmission are set and regulated. Here we describe the use of two-photon microscopy to image transient increases in Ca2+ concentration mediated by NMDA (N-methyl-D-aspartate) receptors in single dendritic spines of CA1 pyramidal neurons in hippocampal slices. To test for NMDA-receptor saturation, we compared responses to stimulation with single and double pulses. We find that a single release event does not saturate spine NMDA receptors; a second release occurring 10 ms later produces approximately 80% more NMDA-receptor activation. The amplitude of spine NMDA-receptor-mediated [Ca2+] transients (and the synaptic plasticity which depends on this) may thus be sensitive to the number of quanta released by a burst of action potentials and to changes in the concentration profile of glutamate in the synaptic cleft.  相似文献   

16.
Turecek R  Trussell LO 《Nature》2001,411(6837):587-590
Glycine and GABAA (gamma-aminobutyric acid A) receptors are inhibitory neurotransmitter-gated Cl- channels localized in postsynaptic membranes. In some cases, GABAA receptors are also found presynaptically, but they retain their inhibitory effect as their activation reduces excitatory transmitter release. Here we report evidence for presynaptic ionotropic glycine receptors, using pre- and postsynaptic recordings of a calyceal synapse in the medial nucleus of the trapezoid body (MNTB). Unlike the classical action of glycine, presynaptic glycine receptors triggered a weakly depolarizing Cl- current in the nerve terminal. The depolarization enhanced transmitter release by activating Ca2+ channels and increasing resting intraterminal Ca2+ concentrations. Repetitive activation of glycinergic synapses on MNTB neurons also enhanced glutamatergic synaptic currents, indicating that presynaptic glycine receptors are activated by glycine spillover. These results reveal a novel site of action of the transmitter glycine, and indicate that under certain conditions presynaptic Cl- channels may increase transmitter release.  相似文献   

17.
L Aniksztejn  Y Ben-Ari 《Nature》1991,349(6304):67-69
Long-term potentiation (LTP) of synaptic transmission in the hippocampus is a widely studied model of memory processes. In the CA1 region, LTP is triggered by the entry of Ca2+ through N-methyl-D-aspartate (NMDA) receptor channels and maintained by the activation of Ca2(+)-sensitive intracellular messengers. We now report that in CA1, a transient block by tetraethylammonium of IC, IM and the delayed rectifier (IK) produces a Ca2(+)-dependent NMDA-independent form of LTP. Our results suggest that this new form of LTP (referred as to LTPK) is induced by a transient enhanced release of glutamate which generates a depolarization by way of the non-NMDA receptors and the consequent activation of voltage-dependent Ca2+ channels.  相似文献   

18.
R E Kalil  M W Dubin  G Scott  L A Stark 《Nature》1986,323(6084):156-158
Although the influence of electrical activity on neural development has been studied extensively, experiments have only recently focused on the role of activity in the development of the mammalian central nervous system (CNS). Using tetrodotoxin (TTX) to abolish sodium-mediated action potentials, studies on the visual system show that impulse activity is essential both for the normal development of neuronal size and responsivity in the lateral geniculate nucleus (LGN), and for the eye-specific segregation of geniculo-cortical axons. There have been no anatomical studies to investigate the influence of action potentials on CNS synaptic development. We report here the first direct evidence that elimination of action potentials in the mammalian CNS blocks the growth of developing axon terminals and the formation of normal adult synaptic patterns. Our results show that when TTX is used to eliminate retinal ganglion-cell action potentials in the cat from birth to 8 weeks, the connections made by ganglion cell axons with LGN neurones, retinogeniculate synapses, remain almost identical morphologically to those in the newborn kitten.  相似文献   

19.
A physiological role for GABAB receptors in the central nervous system   总被引:21,自引:0,他引:21  
P Dutar  R A Nicoll 《Nature》1988,332(6160):156-158
The role of GABA in synaptic transmission in the mammalian central nervous system is more firmly established than for any other neurotransmitter. With virtually every neuron studied, the synaptic action of GABA is mediated by bicuculline-sensitive GABAA receptors which selectively increase chloride conductance. However, it has been shown that GABA has a presynaptic inhibitory action on transmitter release that is insensiive to bicuculline and is selectively mimicked by baclofen. The receptors involved in this action are referred to as GABAB receptors, to distinguish them from the classic bicuculline-sensitive GABAA receptors. In hippocampal pyramidal cells an additional postsynaptic action of GABA and baclofen has been reported that is also insensitive to GABAA antagonists, and may be mediated by GABAB receptors on the postsynaptic neuron. This action of GABA and baclofen involves an increase in potassium conductance. Synaptic activation of pathways converging on hippocampal pyramidal cells results in a slow inhibitory postsynaptic potential which involves an increase in potassium conductance, and it has been suggested that GABAB receptors might be responsible for this synaptic potential. However, to establish convincingly that GABAB receptors are physiologically important in the central nervous system, a selective GABAB antagonist is required. Here we provide this missing evidence. Using the hippocampal slice preparation, we now report that the phosphonic acid derivative of baclofen, phaclofen, is a remarkably selective antagonist of both the postsynaptic action of baclofen and the bicuculline-resistant action of GABA, and that it selectively abolishes the slow inhibitory postsynaptic potential in pyramidal cells.  相似文献   

20.
Potentiation of synaptic transmission in the hippocampus by phorbol esters   总被引:39,自引:0,他引:39  
R C Malenka  D V Madison  R A Nicoll 《Nature》1986,321(6066):175-177
Protein kinase C (PKC), a calcium-dependent phospholipid-sensitive kinase which is selectively activated by phorbol esters, is thought to play an important role in several cellular processes. In mammalian brain PKC is present in high concentrations and has been shown to phosphorylate several substrate phosphoproteins, one of which may be involved in the generation of long-term potentiation (LTP), a long-lasting increase in synaptic efficacy evoked by brief, high-frequency stimulation. Since the hippocampus contains one of the brain's highest levels of binding sites for phorbol esters and is the site where LTP has been most thoroughly characterized, we examined the effects of phorbol esters on hippocampal synaptic transmission and LTP. We found that phorbol esters profoundly potentiate excitatory synaptic transmission in the hippocampus in a manner that appears indistinguishable from LTP. Furthermore, after maximal synaptic enhancement by phorbol esters, LTP can no longer be elicited. Although the site of synaptic enhancement during LTP is not clearly established, phorbol esters appear to potentiate synaptic transmission by acting primarily at a presynaptic locus since changes in the postsynaptic responses to the putative transmitter, glutamate, cannot account for the increased synaptic responses induced by phorbol esters. These findings, in conjunction with previous biochemical studies, raise the possibility that, in mammalian brain, PKC plays a role in controlling the release of neurotransmitter and may be involved in the generation of LTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号