首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
为了为汽油污染土的微生物修复提供优良菌种,以LB培养基为基质,从石油污染土中对汽油降解菌进行了分离鉴定,以降油培养基为基质对分离得到的菌株进行汽油降解率的测定,以培养温度、培养基pH值及培养时间为参数对5种具有优良汽油降解性能的菌株进行单因素试验,基于单因素试验结果进行三因素三水平的正交试验后,以汽油降解率为响应值对试验结果进行响应面分析,筛选出具有优良降解性能的菌株,并确定了菌株降解汽油的最佳条件。结果表明:从石油污染土中分离出了9种具有汽油降解性能的菌株,其中,铜绿假单胞菌、假单胞菌属、苍白杆菌属、博得特氏菌属以及戈登氏菌属具有优良降解性能,这5种菌降解汽油的最优条件为:铜绿假单胞菌、假单胞菌属、苍白杆菌属、博得特氏菌以及戈登氏菌的最佳培养温度均为32℃,培养基pH值均为7.0,培养时间均为20 h,降油培养基中的汽油降解率分别为70.12%、76.42%、75.66%、77.50%和73.22%。  相似文献   

2.
高效石油烃降解菌的分离鉴定及降解特性   总被引:12,自引:0,他引:12  
为获得更为丰富的石油降解微生物资源,从沈抚污灌区石油污染土壤和实验室高浓度柴油胁迫土壤中筛选出了4株高效石油烃降解菌SF-422、SF-428、SF-433和SYS-1.这4株菌总石油烃(Total petroleum hydrocarbon/TPH)生物降解率为67.4%~73.6%.经过16项生理生化特性实验和16S rDNA序列分析鉴定,SF-433,SF-428,SF-422和SYS-1分别为蜡状芽孢杆菌(Bacillus cereus),木糖氧化无色杆菌(Achromobacter xylosoxidans),施氏假单胞菌(Pseudomonas stutzeri)和洋葱伯克霍尔德氏菌(Burkholderia cepacia).纯烃降解定性实验表明所筛选出的4株高效降解菌均能够利用正十六烷、苯、菲和环己烷为唯一碳源生长,其中菌株SF-428和SYS-1显示了对芳烃及环烷烃较强的利用能力.  相似文献   

3.
石油烃优势降解菌在处理含油污泥中的应用   总被引:9,自引:3,他引:9  
在平均温度为-3.9℃的外界环境下,通过引用4株外源微生物以及补充磷酸盐和硝酸盐作为营养源,对炼厂含油污泥用生物堆肥法处理。经过120 d处理后,油泥油含量已经达标,低于GB4284-84所规定的3 000μg/g干泥,硫化物含量大幅度的降低,从28μg/g降到4μg/g。通过色谱-质谱联用分析了各组份降解前后的变化规律。结果表明,利用合适降解石油的外源微生物是必要的,可以明显的增强降解效率和缩短生物修复进程。  相似文献   

4.
利用活性碳增强微波热效应对某石油化工厂区石油烃污染土壤进行修复研究,在微波处理最佳条件下,考察场地石油烃污染土壤的处理效果,通过三维荧光(3D-EEM)和气相色谱(GC)分析了石油烃污染物的组分和去除特性,并采用菌剂强化法对修复后的土壤进行深度生物降解试验.结果 表明:活性碳增强微波热修复技术对石油烃污染土壤具有较好的...  相似文献   

5.
以泥炭作为石油降解菌株的固定化载体,对其最佳固定化条件、固定化时间、泥炭的最佳加入量、温度、pH、振荡条件进行了研究.结果表明:泥炭对石油降解菌株的最佳固定化条件为,时间24 h,泥炭的最佳加入量为80 mL,温度10℃,pH7.5,振荡条件110 r/min,在该条件下泥炭对功能菌固定化率达86.42%.  相似文献   

6.
7.
利用所得的天然混合菌组以及筛选菌种的组合在土壤相条件下对石油烃的生物降解进行尝试,结果表明,经过47 d的生物降解,土壤中石油烃的含量有大幅度的降低,接种微生物对生物修复石油污染土壤能起到一定作用。  相似文献   

8.
针对炼油厂含油废水处理过程中产生的“三泥”处置难题,从大庆油田含油污泥中分离出一株既产表面活性剂又能降解石油烃的菌株GJ,通过形态特征观察、生理生化试验及16S rDNA序列分析,鉴定菌株GJ为希瓦氏菌属(Shewanella sp.),将菌株GJ应用于浮渣和生化污泥的降解试验,探讨GJ对浮渣和生化污泥的降解动力学。对菌株产物进行提取纯化、薄层层析初步判断、红外光谱分析,证实GJ菌产物为糖脂类表面活性剂。浮渣和生化污泥降解试验中,第7天时菌株GJ对石油烃的降解率最高,分别达到81.11%和83.21%。Logistic生长模型、Luedeking-Piret模型和一级反应动力学模型可以很好地模拟GJ菌体生长、表面活性产物合成和对石油烃的降解过程。初步推断GJ菌以石油烃为碳源,在生长过程中分泌表面活性剂,打破油水界面,增大菌株与石油烃的接触程度,促进GJ菌对石油烃的摄取、代谢并进行自我增殖。  相似文献   

9.
从活性污泥中经定向驯化、分离纯化得到一株能以苯酚为唯一碳源生长的降解菌P1,通过革兰氏染色和一系列生理生化实验,初步鉴定其为微球菌属.研究菌株接种量、培养基初始pH 值、培养温度、摇床转速、金属离子等因素对菌株P1的苯酚降解特性的影响.结果表明,苯酚降解适宜条件为:初始pH 值7.0、温度35 ℃、转速150r/min、接种量3%,在此培养条件下,菌株P1可将500mg/L的苯酚于12h内完全降解;当苯酚的初始浓度为100~500mg/L时,菌株P1对苯酚的降解满足Monod零级反应动力学模型.  相似文献   

10.
从松原油田石油污染土壤中筛选一株高效降解石油烃菌株,通过16S rDNA 序列分析,鉴定其为微嗜酸寡养单胞菌( Stenotrophomonas acidaminiphila strain),用该菌株制备固体菌剂,分别考察了料水比、烘干温度、载体比例对菌剂降解石油烃效果的影响,结果表明,最佳制备条件为料水比1:2、烘干温度35℃、菌剂在载体(稻壳:木屑:硅藻土)比例80%:10%:10%。  相似文献   

11.
以原油作为惟一碳源,对长庆油田石油污染土壤中石油降解菌进行富集培养并筛选出高效石油降解菌,研究石油污染土壤微生物特性及石油降解菌降解性能.结果表明,长庆油田受污染土壤石油降解菌为杆状或球状,既有革兰氏阴性菌,又有革兰氏阳性菌;在好氧奈件下,石油烃降解优势菌株a,b,c,d有较强的降解能力,分别属于邻单胞菌属,芽孢杆菌属和动胶菌属;a和b在初始pH为9时降解率最高分别为69.81%和71.41%;c和d在初始pH为7时降油率最高分别为66.94%和65.76%.  相似文献   

12.
利用石油烃降解菌混合菌和紫花苜蓿、高羊茅2种植物对不同浓度柴油污染土进行植物修复、微生物修复和植物—微生物联合修复室外盆栽对比试验,研究植物修复与植物—微生物联合修复试验中植物种子萌芽率和植物生长状况,采用超声萃取—紫外分光光度法分析3种修复方式对柴油污染土的降解效果。试验结果表明,柴油延长了植物种子的萌芽时间;在植物修复和植物—微生物联合修复过程中,高羊茅的植物生物量和株高大于紫花苜蓿,植物—微生物联合修复的植物生物量和株高总体上明显高于植物修复;3种修复方式修复柴油污染土的总体降解效果排序为:植物—微生物联合修复>微生物修复>植物修复;高羊茅的修复效果优于紫花苜蓿;柴油污染土的柴油浓度越低,修复效果越好。  相似文献   

13.
为了获得高效石油降解菌种,以原油为唯一碳源,从油水混合物中分离筛选出菌株。研究不同的温度、转速等对菌体生长情况和石油降解率的影响。在实验条件下,2株优势菌在适宜的条件下对石油的降黏率可分别高达28.5%、51.5%。偏酸或偏碱环境均不利于菌体生长,培养温度对2株菌体生长和石油降解率影响较大,最佳温度是35℃。在高矿化度条件下,菌株对原油仍有降解作用,降黏率为40%以上。原油组分分析结果表明,菌种在以原油为碳源培养后,使原油组分中沥青质、非烃及芳烃类含量均发生变化。  相似文献   

14.
在碱性催化剂固体K2CO3和相转移催化剂苄基三乙基氯化铵(BTEAC)的作用下,由苯甲醛和庚醛合成了素馨醛.用正交试验法考察了原料配比、BTEAC用量和DMF用量对产品素馨醛收率的影响.实验结果表明:在n(苯甲醛):n(庚醛)=1.4:1,BTEAC用量为2.0g,DMF用量为5.0g时,素馨醛的收率最高,达到85.1%.  相似文献   

15.
直投式复合菌剂发酵鱼加工工艺研究   总被引:1,自引:0,他引:1  
试验采取了将发酵鱼中的优势菌(干酪乳杆菌、香肠乳杆菌、乳酸乳杆菌)作为复合菌剂直接投入的方式,研究混合菌株接种量、食盐添加量、腌制温度和腌制时间对发酵鱼品质的影响,并利用单因素和正交试验确定最佳工艺参数。结果显示,最佳工艺条件为:复合菌剂(干酪乳杆菌∶香肠乳杆菌∶乳酸乳杆菌=1∶1∶1,由前期实验得到复合菌种的最佳配比)接种量106CFU/g,食盐添加量5%,腌制温度10℃,腌制时间4 d。按最佳工艺生产的发酵鱼质地紧密,咸度低,保留了传统发酵鱼的香腊味,与传统的发酵鱼相比,产品的腌制时间从7 d降为4 d,缩短了腌制周期,其挥发性盐基氮(TVB-N)和过氧化值相对于自然发酵的腊鱼分别降低了34.9%和51.6%。产品在感官品质和安全性方面都明显优于传统腌制腊鱼。  相似文献   

16.
17.
固化污染土的环境效应是废土二次应用过程中需研究的工程问题。以镉、铅、镍污染土为研究对象,通过固化率指标初筛适宜固化材料配比,模拟干湿循环、长期浸水、高温、冻融循环环境,以浸出毒性指标评价水泥、水泥+粉煤灰、石灰固化后土体的环境效应,并结合微观形态及重金属形态分析,评价失稳机制。结果表明:无机材料可将土中重金属的固化率提高至90%以上,8%的石灰适用于镉污染土的固化,32%+8%的水泥+粉煤灰适用于铅及镍污染土的固化。水环境(干湿、浸水)条件下固化污染土均不存在环境风险,其浸出毒性均低于《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3—2007)中的限值;但无机材料固化污染土对温度(高温、冻融)敏感,特别是水泥、水泥+粉煤灰固化污染土,在温度超过70 ℃时的浸出毒性超过标准中限值,在冻融循环5~7次时接近标准限值。高温会促使重金属赋存形态从稳定态向非稳定态转化,冻融循环会破坏重金属-固化产物体系的结构。无机材料固化重金属污染土的应用需要考虑环境温度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号