首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through the use of ion/molecule reactions and tandem mass spectrometry, phosphate position is assigned in both phosphorylated monosaccharides and oligosaccharides. In previous work phosphate moieties of monosaccharides were stabilized under collisional activation, by first derivatizing the deprotonated monosaccharide with trimethyl borate through an ion/molecule reaction, and the phosphate position determined through marker ions generated in tandem mass spectra. In this work, the methodology is extended to larger phosphorylated oligomers employing chlorotrimethylsilane (TMSCl) as the ion/molecule reagent. Phosphorylated monosaccharides were first investigated to determine diagnostic ions for phosphate linkage in monomeric standards. It was observed that the diagnostic ions showed both linkage and some monosaccharide stereochemical information. Furthermore, it was observed that TMS addition stabilized the phosphate moiety under collisionally activated conditions. Upon identification of the diagnostic ions, the methodology was applied to lactose-1-phosphate. It was found that TMSCl, stabilized the phosphate moiety upon collisional activation, and furthermore, the phosphate linkage could be determined through tandem mass spectrometric analysis. As a further extrapolation to biologically relevant problems, the methodology was applied to a lipophosphoglycan analog from the protozoan parasite Leishmania. This sample contains bridging phosphates which were converted to terminal phosphates through collision induced dissociation. The sample was then analyzed in the same manner as lactose-1-phosphate, yielding phosphate linkage information and stereochemical information. This study showed that, using the developed methodology, phosphate linkage can be determined from both monosaccharides and larger oligosaccharides; furthermore it is applicable to samples in which the phosphates are either terminating or bridging.  相似文献   

2.
Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.  相似文献   

3.
The specific adsorption of radiolabeled phosphate ions from perchlorate supporting electrolyte onto gamma-Al2O3 and hematite powder has been investigated. The pH dependence of the adsorption of phosphate species was compared with that of sulfate ions. It was demonstrated that in contrast to the behavior of sulfate ions the pH dependence of phosphate ions goes through a maximum. On the other hand, it was found that the reversible adsorption of phosphate ions is accompanied by the formation of strongly chemisorbed species. Results obtained from a study of the competitive adsorption of sulfate and phosphate ions at various pH values are reported and interpreted. An attempt is made to correlate the experimental findings with the models for anion adsorption reported in the literature.  相似文献   

4.
Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts. Previous work with Escherichia coli alkaline phosphatase (AP), however, suggests that this enzyme catalyzes the hydrolysis of phosphate monoesters through a loose, dissociative transition state, similar to that in solution. AP also exhibits catalytic promiscuity, with a low level of phosphodiesterase activity, despite the tighter, more associative transition state for phosphate diester hydrolysis in solution. Because AP is evolutionarily optimized for phosphate monoester hydrolysis, it is possible that the active site environment alters the transition state for diester hydrolysis to be looser in its bonding to the incoming and outgoing groups. To test this possibility, we have measured the nonenzymatic and AP-catalyzed rate of reaction for a series of substituted methyl phenyl phosphate diesters. The values of beta(lg) and additional data suggest that the transition state for AP-catalyzed phosphate diester hydrolysis is indistinguishable from that in solution. Instead of altering transition state structure, AP catalyzes phosphoryl transfer reactions by recognizing and stabilizing transition states similar to those in aqueous solution. The AP active site therefore has the ability to recognize different transition states, a property that could assist in the evolutionary optimization of promiscuous activities.  相似文献   

5.
Bioactive glasses and glass ceramics need to be capable of growing a calcium phosphate layer at their surfaces in physiological environment in order to bond with living bone. Sol-gel prepared silica (silica gel) and titania (titania gel) are efficient calcium phosphate absorbents. Both gels extract calcium and phosphate from surrounding physiological and other calcium phosphate solutions and form a calcium phosphate at their surfaces in return. Thus, they can integrate with bone. Under the same condition, however, silica and titania, as both prepared through a conventional high temperature process, are unable to transfer calcium and phosphate from the solutions to obtain a calcium phosphate at their surfaces. Therefore, it is concluded that using inorganic or metal organic precursors, sol-gel process can yield bioactive materials with a high bioactivity.  相似文献   

6.
Calcium phosphate/polymeric microparticles synthesized through a biomimetic approach are regarded with increasing interest for their various potential applications, including tissue engineering and regenerative medicine. Herein we report the synthesis and characterization of gelatin/octacalcium phosphate core/shell microspheres. Deposition of the calcium phosphate shell on the polymeric microspheres was obtained through bio-inspired mineralization on the surface of functionalized gelatin microparticles. Gelatin microspheres stabilized by alginate dialdehyde were prepared using an inverse microemulsion. Functionalization was achieved by enriching the microspheres composition with calcium ions or, alternatively, with alendronate, a bisphosphonate widely employed for the treatment of bone diseases. Functionalization and synthesis of the inorganic phase in the microemulsion environment were key factors for the achievement of a complete coating of the microspheres with calcium phosphate. The inorganic shell is constituted of small crystals of octacalcium phosphate, which control gelatin and alendronate release.  相似文献   

7.
Modern and fossil teeth record seasonal information on climate, diet, and migration through stable isotope compositions in enamel and dentine. Climatic signals such as seasonal variation in meteoric water isotopic composition can be recovered through a microscale histology-based sampling and isotopic analysis of enamel phosphate oxygen. The phosphate moiety in bioapatite is particularly resistant to post mortem diagenesis. In order to determine the phosphate oxygen isotope composition of enamel, phosphate must be chemically purified from other oxygen sources in the enamel lattice and matrix, mainly hydroxyl and carbonate ions, and trace quantities of organics.We present a wet chemical technique for purifying phosphate from microsampled enamel and dentine. This technique uses a sodium hypochlorite oxidation step to remove interferences from residual organic constituents of the enamel and/or dentine scaffold, isolates phosphate as relatively large and easily manipulated Ag(3)PO(4) crystals by using a strongly buffered, moderate-temperature microprecipitation, and preserves the oxygen isotope composition of the initial tooth phosphate. The reproducibility of phosphate oxygen isotope compositions thus determined (measured as delta(18)O, V-SMOW scale) is typically 0.2-0.3 per thousand (1 s.d.) on samples as small as 300 microg of enamel or dentine, a considerable improvement over available techniques for analyses of bioapatite phosphate oxygen.  相似文献   

8.
Hierarchically laminated calcium phosphate was produced through Liesegang periodic precipitation in a gel matrix of poly(acrylic acid) containing phosphate anions by diffusion of calcium cations.  相似文献   

9.
A simple and rapid in situ preconcentration method for the determination of phosphate in environmental waters has been developed for field analysis. This method is based on solid-phase extraction on a zirconium-loaded Sep-Pack Accell CM cartridge (Zr-SP) and is applicable to studies in which sampling is performed by use of a graduated syringe to prevent contamination and to ensure easy operation at sampling sites. The Zr-SP cartridge was prepared by passing 0.1 mol L(-1) zirconium solution through a Sep-Pak Accell CM cartridge, packed with cation exchange sorbent based on a silica matrix. The adsorption of phosphate and its desorption depend only on the pH of the solution. A water sample containing phosphate was adjusted to pH 2 and passed through the Zr-SP cartridge to collect it. The retained phosphate was quantitatively eluted with 0.5 mol L(-1) sodium hydroxide solution. The phosphate retained in the Zr-SP cartridge was stable for at least one month. The established preconcentration method was successfully applied to brackish lake waters to investigate seasonal changes in the distribution and behavior of phosphate in a brackish lake.  相似文献   

10.
Mosey NJ  Woo TK 《Inorganic chemistry》2006,45(18):7464-7479
The reactions that occur between metathiophosphate (MTP) molecules are identified and examined through ab initio molecular dynamics simulations and static quantum chemical calculations at the density functional level of theory. The simulations show that certain types of MTPs can react to yield phosphate chains, while others only dimerize. These differences are rationalized in terms of reaction energies and the electronic structures of these molecules. In the reaction leading to the formation of phosphate chains, the reactive center, a tri-coordinate phosphorus atom, is continually regenerated. A polymerization mechanism linking MTPs to phosphate chains is developed on the basis of these results. This information sheds light on the underlying processes that may be responsible for the formation of phosphates under high-temperature conditions and may prove useful in the development of protocols for the rational synthesis of complex phosphate structures.  相似文献   

11.
The binding of phosphate to tripodal metalloreceptors 1 and 2 is reported. Receptors 1 and 2 are C3v symmetric, designed to complement three sides of a tetrahedron. The receptors derive from tripodal ligands that are preorganized through binding to a central Cu(II) atom. These metalloreceptors demonstrate high selectivity and affinity for the molecular recognition of phosphate in aqueous media at neutral pH. The binding of phosphate and other anions to the cavities of receptors 1 and 2 was monitored by UV/vis titration techniques. Binding algorithms were used to determine the affinity of phosphate to 1 and 2 with association values (Ka) of 2.5 x 104 and 1.5 x 104 M-1, respectively.  相似文献   

12.
The mechanisms of nonenzymatic breakdown of the tetrahedral intermediates (THIs) of the carboxyvinyl transferases MurA and AroA were examined in order to illuminate the interplay between the inherent reactivities of the THIs and the enzymatic strategies used to promote catalysis. THI degradation was through phosphate departure, with C-O bond cleavage. It was acid catalyzed and dependent on the protonation state of the carboxyl of the alpha-carboxyketal phosphate functionality, with ionizations at pK(a) = 3.2 +/- 0.1 and 4.3 +/- 0.1 for MurA and AroA THIs, respectively. The solvent deuterium kinetic isotope effect for MurA THI at pL 2.0 was 1.3 +/- 0.4, consistent with general acid catalysis. The pK(a)'s suggested intramolecular general acid catalysis through protonation of the bridging oxygen of the phosphate, though H(3)O(+) catalysis was also possible. The product distribution varied with pH. The dominant breakdown products were pyruvate + phosphate + R-OH (R-OH = UDP-GlcNAc or shikimate 3-phosphate) at all pH's, particularly low pH. At higher pH's, increasing proportions of ketal, arising from intramolecular substitution of phosphate by the adjacent hydroxyl and the enolpyruvyl products of phosphate elimination were observed. With MurA THI, the product distribution fitted to pK(a)'s 1.6 and 6.2, corresponding to the expected pK(a)'s of a phosphate monoester. C-O bond cleavage was demonstrated by the lack of monomethyl [(33)P]phosphate formed upon degrading MurA [(33)P]THI in 50% methanol. General acid catalysis through the bridging oxygen is consistent with the location of the previously proposed general acid catalyst for THI breakdown in AroA, Lys22.  相似文献   

13.
Monte Carlo simulations are used to model the self-organizing behavior of the biomineralizing peptide KSL (KKVVFKVKFK) in the presence of phosphate. Originally identified as an antimicrobial peptide, KSL also directs the formation of biosilica through a hypothetical supramolecular template that requires phosphate for assembly. Specificity of each residue and the interactions between the peptide and phosphate are considered in a coarse-grained model. Both local and global physical quantities are calculated as the constituents execute their stochastic motion in the presence and absence of phosphate. Ordered peptide aggregates develop after simulations reach thermodynamic equilibrium, wherein phosphates form bridging ligands with lysines and are found interdigitated between peptide molecules. Results demonstrate that interactions between the lysines and phosphate drive self-organization into lower energy conformations of interconnected peptide scaffolds that resemble the supramolecular structures of polypeptide- and polyamine-mediated silica condensation systems. Furthermore, the specific phosphate-peptide organization appears to mimic the zwitterionic structure of native silaffins (scaffold proteins of diatom shells), suggesting a similar template organization for silica deposition between the in vitro KSL and silaffin systems.  相似文献   

14.
ABSTRACT

Sevelamer hydrochloride (polyallylamine crosslinked with epichlorohydrin) is a polymeric hydrogel that has been developed as an oral pharmaceutical to prevent the absorption of dietary phosphate by kidney dialysis patients. It has been found to bind to phosphate in vitro, and to do so more effectively than a wide range of other cationic polymers. It shows a preference for phosphate over other intestinal anions, such as chloride and bicarbonate. The preference for phosphate is believed to be due to its dianion character, and may also involve hydrogen bonding. The absorption of phosphate in vitro is rapid (less than a minute) relative to the time of passage of such a drug through the small intestine (hours). It has also been found to prevent the absorption of dietary phosphate in vivo and in humans, and is presently awaiting FDA approval.  相似文献   

15.
A simple and rapid in situ preconcentration method for the determination of phosphate in environmental waters has been developed for field analysis. This method is based on solid-phase extraction on a zirconium-loaded Sep-Pack Accell CM cartridge (Zr-SP) and is applicable to studies in which sampling is performed by use of a graduated syringe to prevent contamination and to ensure easy operation at sampling sites. The Zr-SP cartridge was prepared by passing 0.1 mol L–1 zirconium solution through a Sep-Pak Accell CM cartridge, packed with cation exchange sorbent based on a silica matrix. The adsorption of phosphate and its desorption depend only on the pH of the solution. A water sample containing phosphate was adjusted to pH 2 and passed through the Zr-SP cartridge to collect it. The retained phosphate was quantitatively eluted with 0.5 mol L–1 sodium hydroxide solution. The phosphate retained in the Zr-SP cartridge was stable for at least one month. The established preconcentration method was successfully applied to brackish lake waters to investigate seasonal changes in the distribution and behavior of phosphate in a brackish lake.  相似文献   

16.
Low cost biosorbents have gained considerable importance in the past decade for their removal efficiency of contaminants from wastewaters. Both removal and recycle of the phosphate anion through benign methods are relevant to sustain a steady balance. An attempt has been made to give a comprehensive insight into several physico-chemical factors leading to the adsorption process by various natural biosorbents. Few important facts regarding phosphate biosorption have emerged out as key points viz., pH < pHpzc, high uptake capacity; correlation with Langmuir isotherm model and pseudo second order kinetics; decrease of uptake capacity with longer contact time; enhancement of adsorption process in presence of counter ions, etc. Also, it was noted that the adsorbate: adsorbent ratio is crucial for the removal efficiency of the phosphate ions. A few biosorbents exhibit removal efficiency to a large extent (>95%) although even higher adsorption capacity can be obtained by the modification of the adsorbents. Commercial biomatrices like biochars have shown wide applications for removal of phosphates. Magnetic biochars have shown special performance owing to the presence of iron and a porous nature of their structure. Desorption studies revealed that almost complete recovery of the phosphate ion is possible through simple ion exchange mechanism.  相似文献   

17.
Acyl phosphate monoesters are intermediates in many biochemical acylation reactions, such as those involving aminoacyl adenylates. Benzoyl methyl phosphate, a typical acyl phosphate monoester, is slowly hydrolyzed in neutral solutions but reacts rapidly with amines. Since biochemical processes of acyl phosphate monoesters involve accelerated reactions with oxygen-centered nucleophiles, we sought catalysts for hydrolysis and methanolysis of benzoyl methyl phosphate to mimic the biochemical outcome. Lanthanide ions are particularly effective catalysts, accelerating reactions much more than comparable levels of magnesium ion. Detailed kinetic analysis of the hydrolysis reactions reveals formation of a 1:1 complex, followed by rapid reaction with a nucleophile. The hydroxide-dependent hydrolysis rate in the europium complex is about 10(5) times that of free substrate with hydroxide. A mechanism that accounts for the data and observed behavior involves bidentate coordination of the metal ion by the acyl phosphate through phosphate and carbonyl oxygens, lowering the energy of the tetrahedral addition intermediate and the associated transition states. The dependence of the metal ion catalyzed process on the concentration of hydroxide ion is consistent with coordinated hydroxide acting as a nucleophile. The reaction of benzoyl methyl phosphate with methanol to form methyl benzoate and methyl phosphate is 30 000 times more rapid in the presence of 0.0001 M lanthanum triflate (in the absence of the metal ion k(obs) = 2.1 x 10(-7) s(-1), at 25 degrees C). Thus, the combination of acyl phosphate esters and lanthanide salts appears to be a promising method for biomimetic acylation of hydroxyl groups.  相似文献   

18.
不对称环磷酸肟酯的合成和生物活性研究   总被引:2,自引:1,他引:1  
通过反式-2-氯-2-氧-4-苯基-5,5-二甲基-1,3,2-二氧磷杂环己烷(Ⅱ)和α-氰基-芳基甲醛肟(Ⅰa-Ⅰf)在相转移催化条件下反应,制得新型的1,3,2-二氧磷杂环磷酸肟酯(Ⅲa_Ⅲf),产物中的非对映异构体经1HNMR、31PNMR和单晶X射线衍射确证.但化合物Ⅱ与芳基甲醛肟反应,得到芳基甲腈和环磷酸,这可能是生成不稳定的环磷酸醛肟酯(Ⅳ)经Beckmann裂解所致.生物活性测试表明,化合物cis-Ⅲd具有很好的抗烟草花叶病毒活性.  相似文献   

19.
Calcium phosphates are among the most important biominerals in living organisms, where they play both a mechanical and a calcium storage role. Their growth in vivo is under strong biological control, and this process occurs in closed spaces. Our aim in this paper is to describe a microreactor system able to control the mineralization process within closed spaces. To this aim we produce giant liposomes containing calcium ions as active ions in the mineralization process, spermine as an activator of crystal growth, and alkaline phosphatase as a catalyst to convert phosphate esters into phosphates. These phosphate esters are provided in the form of p-nitrophenyl phosphate outside of the liposomes. It is demonstrated that these amphiphilic molecules are able to diffuse through the lipidic container and to be subsequently hydrolyzed under enzymatic catalysis into active phosphate species which interact with the already available calcium and spermine to produce calcium phosphates only in the interior of the liposomes. This opens the route to control the calcium phosphate particle size in biomimetic systems.  相似文献   

20.
Phosphate adsorption mechanism by a homogenous porous layer of nano-sized magnetite particles immobilized onto granular activated carbon (nFe-GAC) was studied for both interface and bulk structures. X-ray Photoelectron Spectroscopy (XPS) analysis revealed phosphate bonding to the nFe-GAC predominantly through bidentate surface complexes. It was established that phosphate was adsorbed to the magnetite surface mainly via ligand exchange mechanism. Initially, phosphate was adsorbed by the active sites on the magnetite surface, after which it diffused into the interior of the nano-magnetite layer, as indicated by intraparticle diffusion model. This diffusion process continues regardless of interface interactions, revealing some of the outer magnetite binding sites for further phosphate uptake. Desorption, using NaOH solution, was found to be predominantly a surface reaction, at which hydroxyl ions replace the adsorbed phosphate ions only at the surface outer biding sites. Five successive fix-bed adsorption/regeneration cycles were successfully applied, without significant reduction in the nFe-GAC adsorption capacity and at high regeneration efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号