首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transgenic traits associated with the majority of commercial genetically modified crops are focused on improving herbicide and insecticide management practices. The use of the transgenic technology in these crops and the associated chemistry has been the basis of studies that provide evidence for occasional improvement in environmental benefits due to the use of less residual herbicides, more targeted pesticides, and reduced field traffic. This is nicely exemplified through studies using Environmental Impact Quotient (EIQ) assessments. Whilst EIQ evaluations may sometimes illustrate environmental benefits they have their limitations. EIQ evaluations are not a surrogate for Environmental Risk Assessments and may not reflect real environmental interactions between crops and the environment. Addressing the impact cultivated plants have on the environment generally attracts little public attention and research funding, but the introduction of GM has facilitated an expansion of research to address potential environmental concerns from government, NGOs, industry, consumers, and growers. In this commentary, some evidence from our own research and several key papers that highlight EIQ assessments of the impact crops are having on the environment are presented. This information may be useful as an education tool on the potential benefits of GM and conventional farming. In addition, other deliberate, accidental, and GM-driven benefits derived from the examination of GM cropping systems is briefly discussed.  相似文献   

2.
With the potential advent of genetically modified herbicide-resistant (GMHR) crops in the European Union, changes in patterns of herbicide use are predicted. Broad-spectrum, non-selective herbicides used with GMHR crops are expected to substitute for a set of currently used herbicides, which might alter the agro-environmental footprint from crop production. To test this hypothesis, the environmental impact of various herbicide regimes currently used with non-GMHR maize in Belgium was calculated and compared with that of possible herbicide regimes applied in GMHR maize. Impacts on human health and the environment were calculated through the pesticide occupational and environmental risk (POCER) indicator. Results showed that the environmental impact of herbicide regimes solely relying on the active ingredients glyphosate (GLY) or glufosinate-ammonium (GLU) is lower than that of herbicide regimes applied in non-GMHR maize. Due to the lower potential of GLY and GLU to contaminate ground water and their lower acute toxicity to aquatic organisms, the POCER exceedence factor values for the environment were reduced approximately by a sixth when GLY or GLU is used alone. However, the environmental impact of novel herbicide regimes tested may be underestimated due to the assumption that active ingredients used with GMHR maize would be used alone. Data retrieved from literature suggest that weed control efficacy is increased and resistance development delayed when GLY or GLU is used together with other herbicides in the GMHR system. Due to the partial instead of complete replacement of currently used herbicide regimes, the beneficial environmental impact of novel herbicide regimes might sometimes be reduced or counterbalanced. Despite the high weed control efficacy provided by the biotechnology-based weed management strategy, neither indirect harmful effects on farmland biodiversity through losses in food resources and shelter, nor shifts in weed communities have been demonstrated in GMHR maize yet. However, with the increasing adoption rate of GMHR maize and their associated novel herbicide regimes, this situation is expected to change in the short-term. An erratum to this article can be found at  相似文献   

3.
This paper updates the assessment of the impact commercialized agricultural biotechnology is having on global agriculture, from some important environmental perspectives. It focuses on the impact of changes in pesticide use and greenhouse gas emissions arising from the use of biotech crops. The technology has reduced pesticide spraying by 443 million kg (-9.1%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops [as measured by the indicator the Environmental Impact Quotient (EIQ)] by 17.9%. The technology has also significantly reduced the release of greenhouse gas emissions from this cropping area, which, in 2010, was equivalent to removing 8.6 million cars from the roads.  相似文献   

4.
Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes transporting a high proportion of the original herbicide from rivers into the GBR lagoon.  相似文献   

5.
In intensive agricultural systems runoff is one of the major potential diffuse pollution pathways for pesticides and poses a risk to surface water. Ditches are common in the Po Valley and can potentially provide runoff mitigation for the protection of watercourses. The effectiveness depends on ditch characteristics, so there is an urgent need for site-specific field trials. The use of a fugacity model (multimedia model) can allows recognition of the mitigation main processes. A field experiment was conducted in order to evaluate the mitigation capacity of a typical vegetated ditch, and results were compared with predictions by a fugacity model. To evaluate herbicide mitigation after an extreme runoff, the ditch was flooded with water containing mesotrione, S-metolachlor and terbuthylazine. Two other subsequent floods with uncontaminated water were applied 27 and 82 days later to evaluate herbicides release. Results show that the ditch can immediately reduce runoff concentration of herbicides by at least 50% even in extreme flooding conditions. The half-distances were about 250 m. As a general rule, a runoff of 1 mm from 5 ha is mitigated by 99% in 100 m of vegetated ditch. Herbicides retention in the vegetated ditch was reversible, and the second flood mobilized 0.03-0.2% of the previous one, with a concentration below the drinking water limit of 0.1 μg L-1. No herbicide was detected in the third flood, because the residual amount in the ditch was too low. Fugacity model results show that specific physical-chemical parameters may be used and a specific soil-sediment-plant compartment included for modelling herbicides behaviour in a vegetated ditch, and confirm that accumulation is low or negligible for herbicides with a half-life of 40 days or less. Shallow vegetated ditches can thus be included in a general agri-environment scheme for the mitigation of pesticides runoff together with wetlands and linear buffer strips. These structures are present in the landscape, and their environmental role can be exploited by proper management.  相似文献   

6.
Indicators are used to quantify the pressure of pesticides on the environment. Pesticide risk indicators typically require weighting environmental exposure by a no effect concentration. An indicator based on spread equivalents (ΣSeq) is used in environmental policy in Flanders (Belgium). The pesticide risk for aquatic life is estimated by weighting active ingredient usage by the ratio of their maximum allowable concentration and their soil halflife. Accurate estimates of total pesticide usage in the region are essential in such calculations. Up to 2012, the environmental impact of pesticides was estimated on sales figures provided by the Federal Government. Since 2013, pesticide use is calculated based on results from the Farm Accountancy Data Network (FADN). The estimation of pesticide use was supplemented with data for non-agricultural use based on sales figures of amateur use provided by industry and data obtained from public services. The Seq-indicator was modified to better reflect reality. This method was applied for the period 2009-2012 and showed differences between estimated use and sales figures of pesticides. The estimated use of pesticides based on accountancy data is more accurate compared to sales figures. This approach resulted in a better view on pesticide use and its respective environmental impact in Flanders.  相似文献   

7.
WLR1, a biotype of Lolium rigidum Gaud. that had been treated with the sulfonylurea herbicide chlorsulfuron in 7 consecutive years, was found to be resistant to both the wheat-selective and the nonselective sulfonylurea and imidazolinone herbicides. Biotype SLR31, which became cross-resistant to chlorsulfuron following treatment with the aryloxyphenoxypropionate herbicide diclofop-methyl, was resistant to the wheat-selective, but not the nonselective, sulfonylurea and imidazolinone herbicides. The concentrations of herbicide required to reduce in vitro acetolactate synthase (ALs) activity 50% with respect to control assays minus herbicide for biotype WLR1 was greater than those for susceptible biotype VLR1 by a factor of >30, >30, 7,4, and 2 for the herbicides chlorsulfuron, sulfometuron-methyl, imazapyr, imazathapyr, and imazamethabenz, respectively. ALS activity from biotype SLR31 responded in a similar manner to that of the susceptible biotype VLR1. The resistant biotypes metabolized chlorsulfuron more rapidly than the susceptible biotype. Metabolism of 50% of [phenyl-U-14C]chlorsulfuron in the culms of two-leaf seedlings required 3.7 h in biotype SLR31, 5.1 h in biotype WLR1, and 7.1 h in biotype VLR1. In all biotypes the metabolism of chlorsulfuron in the culms was more rapid than that in the leaf lamina. Resistance to ALS inhibitors in L. rigidum may involve at least two mechanisms, increased metabolism of the herbicide and/or a herbicide-insensitive ALS.  相似文献   

8.
While pesticides help to effectively control crop pests, their collateral effects often harm the environment. On the French island of Reunion in the Indian Ocean, over 75% of the pesticides used are herbicides and they are regularly detected in water. Agri-environmental models and pesticide risk indicators can be used to predict and to help pesticide users to reduce environmental impacts. However, while the complexity of models often limits their use to the field of research, pesticide risk indicators, which are easier to implement, do not explicitly identify the technical levers that farmers can act upon to limit such transfers on their scale of action (the field). The aim of this article is to contribute to developing a decision support tool to guide farmers in implementing relevant practices regarding the reduction of pesticide transfers. In this article, we propose a methodology based on classification and regression trees. We applied our methodology to a pesticide risk indicator (I-PHY indicator) for identifying the importance of the variables, their interactions and relative weight in contributing to the score of the indicator. We applied our methodology to the assessment of transfer risks linked to the use of 20 herbicides applied to all soils in Reunion and according to different climate, plot management and product application scenarios (4096 scenarios tested). We constructed regression trees which identified, for each herbicide on each soil type, the contribution made by each input variable to the construction of the indicator score. The tree is represented graphically, and this aids exploration and understanding. The 20 herbicides were divided into 3 groups that differed through the main contributing variable to the indicator score. These variables were all technical levers available to farmers to limit transfer risks. These trees then become decision support tools specific to each pesticide user, enabling them to take appropriate decisions with a view to reducing pesticide environmental impacts.  相似文献   

9.

Introduction

Pesticide poisoning is an important public health problem worldwide. The study aimed to determine the risk of all-cause and cause-specific inpatient mortality and to identify prognostic factors for inpatient mortality associated with unintentional insecticide and herbicide pesticide poisonings.

Methods

We performed a retrospective cohort study of 3,986 inpatients recruited at hospitalization between 1999 and 2008 in Taiwan. We used the International Classification of Disease, 9th ed., Clinical Modification external causes of injury codes to classify poisoning agents into accidental poisoning by insecticides and herbicides. Comparisons in mortality rates were made between insecticide poisoning patients and herbicide poisoning patients by using the Cox proportional hazards models to estimate multivariable-adjusted hazard ratios (HRs) and their 95% confidence intervals (CIs).

Results

There were 168 deaths during 21,583 person-days of follow-up evaluation (7.8 per 1,000 person-days). The major causes of mortality for insecticide poisonings were the toxic effect of organophosphate and coma, and the major causes of mortality for herbicide poisonings were the toxic effect of other pesticides and the toxic effect of organophosphate. The mortality for herbicide exposure was fourfold higher than that for insecticide exposure. The factors associated with inpatient mortality were herbicide poisonings (HR = 4.58, 95% CI 3.29 to 6.37) and receiving mechanical ventilation treatment (HR = 3.85, 95% CI 2.73 to 5.42).

Conclusions

We demonstrated that herbicides stand out as the dominant agent for poisoning-related fatalities. The control of and limiting access to herbicide agents and developing appropriate therapeutic regimens, including emergency care, should be priorities.  相似文献   

10.
Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistant kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measured by the ratio of resistant I50 to susceptible I50) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of [14C]chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The Km values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mm, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme.  相似文献   

11.
Summary Field disinfestation in autumn with normal or increased dosages of 1,3-dichloropropene, metham-sodium or chloroform, and in spring with ethoprophos, did not, or hardly, affect the degradationin situ of some herbicides applied in spring. However, during laboratory incubation of samples from the disinfested plots, sometimes decreased herbicide degradation rates or increased lag phases were found.The top few centimetres of the field soil, on which the herbicides were sprayed, apparently largely escaped fumigation. Accordingly, effects of fumigation on herbicide degradation, organic matter and N metabolism were stronger in samples from the 10–20 cm layer than in samples from 0–10 cm.In the laboratory fumigation of soil samples with CHCl3 was much more drastic in inhibiting herbicide degradation, N mineralisation and nitrification; inoculation with 10% fresh soil, however, greatly accelerated the recovery of these processes. Therefore, in practice prolonged or drastic effects of chemical soil disinfestation on metabolic integrity of the soil are not to be expected.  相似文献   

12.
张国  逯非  黄志刚  陈舜  王效科 《生态学杂志》2016,27(9):2875-2883
现代农业中化学农药在提高作物产量中发挥着重要的作用,但是我国普遍存在过量用药现象,导致环境污染和危害食品安全.基于2012年的全国性农户问卷调查,本研究分析了2011年我国水稻、小麦和玉米使用农药现状,并估算了它们的温室气体排放.结果表明: 这3种作物至少使用了54种杀虫剂、24种杀菌剂和50种除草剂,其中32%的水稻种植农户使用了生物农药.全国3种作物使用了30.8 kt杀虫剂、16.5 kt杀菌剂和58.3 kt除草剂,它们的温室气体排放总量为1.5 Tg Ce,杀虫剂、杀菌剂和除草剂的排放分别占23.8%、16.9%和59.3%.南方区的农药用量占全国用量的51%;全国水稻、小麦和玉米的单位产量农药用量分别是0.22、0.18和0.24 g·kg-1粮食,3种作物用药总量分别为44.4、21.4和39.7 kt,温室气体排放分别为665.5、250.1和547.5 Gg Ce;在不同农药种类中,有机磷类杀虫剂占我国所用杀虫剂总量的69%,苯丙咪唑类、有机磷类、唑类和有机硫类等杀菌剂占杀菌剂总量的87%,酰胺类、有机杂环类和有机磷类等除草剂占除草剂总量的85%.因此,减少农药用量,对于我国粮食安全和环境安全及减少农业温室气体排放都具有重要意义.  相似文献   

13.
A multiple-strain algal biosensor was constructed for the detection of herbicides inhibiting photosynthesis. Nine different microalgal strains were immobilised on an array biochip using permeable membranes. The biosensor allowed on-line measurements of aqueous solutions passing through a flow cell using chlorophyll fluorescence as the biosensor response signal. The herbicides atrazine, simazine, diuron, isoproturon and paraquat were detectable within minutes at minimal LOEC (Lowest Observed Effect Concentration) ranging from 0.5 to 100μgL−1, depending on the herbicide and algal strain. The most sensitive strains in terms of EC50 values were Tetraselmis cordiformis and Scherffelia dubia. Less sensitive species were Chlorella vulgaris, Chlamydomonas sp. and Pseudokirchneriella subcapitata, but for most of the strains no general sensitivity or resistance was found. The different responses of algal strains to the five herbicides constituted a complex response pattern (RP), which was analysed for herbicide specificity within the linear dose-response relationship. Comparisons of herbicide-specific RP to reference RPs of the five herbicides always showed the lowest deviation of the herbicide-specific RP tested with the reference RP of the same herbicide for the triazine and phenylurea herbicides. We therefore conclude that, in principle, identification of a specific herbicide is possible employing the algal sensor chip.  相似文献   

14.
细胞色素P450与除草剂抗性转基因植物   总被引:2,自引:0,他引:2  
邱星辉  冷欣夫 《生命科学》2002,14(3):168-170
介绍了除草剂代谢有关的细胞色素P450基因及其应用,已从动植物体中分离具有除草剂代谢活性的细胞色素P450基因,通过转基因方法,成功培育出抗除草剂的转基因植物。  相似文献   

15.
Isoproturon is a pre- and post-emergence herbicide used generally to manage Phalaris minor and Avena ludoviciana in wheat. The importance of post-emergence and foliarly applied pesticides has been increasing. The first reaction environment of these herbicides is the leaf surface made up of polymerised esters of higher fatty acids. In the presence of sunlight, the fatty substances on leaf surfaces generate reactive radicals, or ions which may interact with herbicide molecules leading towards degradation resulting in the loss of bioefficacy of herbicides and the formation of metabolites of unknown toxicity. The present experiment was conducted with the objective to know the photochemical behaviour of isoproturon on different leaf-extracted epicuticular cutin surfaces. Epicuticular waxes, i.e. cutins were extracted from P. minor and A. ludoviciana leaf surfaces using dichloromethane as a solvent and further purified with activated charcoal. On the cutin surface under UV-light (365 nm), the transformation of the herbicide is very slow as it is evident from its higher half-life values, 75 min on P. minor cutin surface and 115 min on A. ludoviciana cutin, as compared to that on the glass surface (half-life 53 min). A similar pattern was also observed under the sunlight condition. It may be due to the quenching effect imparted by the cutin material or simply screening effect of it on the herbicide. The sunlight-irradiated extracts of isoproturon and its degradation products were analysed by LC–MS/MS using electrospray interfacing technique and the structures of six different photoproducts were characterised by their respective spectra. The degradation pathways involved mainly demethylation and ring oxidation processes forming hydroxylated compounds. The mixture of these photoproducts were found to be non-toxic to A. ludoviciana and P. minor.  相似文献   

16.
The objective of this study was to quantify adsorption and degradation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1 -methylethyl) acetamide] and metribizun [4-amino-6-(1,1 -dimethylethyl)-3-(methylthio)-1,2,4-trazine-5(4H)-one] in a soil planted to winter covers clover (Trifolium sp.), vetch (Vicia villosa), and wheat (Triticum aestivum). Surface soil samples (0 to 5?cm) from Memphis silt loam (fine-silty, mixed, thermic Typic Hapludalf) were collected and equilibrated with herbicide at initial concentrations ranging from 0 to 20?mg L?1 that were then applied for a batch experiment. Soils were treated either with a single herbicide or a mixture of the two herbicides. For the degradation experiments, herbicides at a concentration of 10?mg kg?1 soil were applied and incubated for 21?d at ~23°C. Metolachlor and metribuzin adsorptions were described by the Freundlich isotherm. Average Freundlich distribution coefficient (Kf) for metolachlor was significantly higher (p≥0.05) than that of metribuzin in soils under the three crop covers irrespective of method of application. The Kf for metolachlor ranged from 18.38 to 11.18?L kg?1, and Kf for metribuzin ranged from 1.80 to 0.93?L kg?1. Average normalized distribution coefficient (Koc) for metolachlor was significantly higher (p≥0.05) than average Koc for metribuzin irrespective of crop cover. After 21 days of incubation, average half-life of metolachlor across soil under the three crop covers was significantly higher than the average half-life of metribuzin (p≥0.05). Half-life values ranged from 20.6 to 24.9 days for metolachlor, and 4.4 to 12.4 days for metribuzin. In soils treated with metribuzin, the half-life was highest for soil under wheat and lowest for soil under clover (p≥0.05).  相似文献   

17.
除草剂是农业生产中一种被广泛使用的农药,是当前种植业重要的一环,但其长期使用也导致了自然界中广泛存在除草剂残留和污染.蜜蜂作为自然界最主要的传粉者,具有重要的经济和生态价值.近年来的研究发现,除草剂对蜜蜂有着明显的负面作用,可能会导致蜜蜂个体健康受损、蜂群损失和其在蜂产品中残留等问题.本文综述了除草剂对蜜蜂生理、行为、寿命和肠道菌群稳态的影响,旨在为进一步探索除草剂对蜜蜂危害的相关研究提供基础,并为未来除草剂的科学使用提供参考.  相似文献   

18.
A new strategy combining modem hoeing technique and spray application has been developed in order to reduce the amount of herbicides down to 20% compared to common practice. The effects on weed control have been investigated as well as the impact on qualitative and quantitative harvest. In two large scale field trials and two years of testing the authors evaluated different hoeing techniques combined with band spray application and standard spray application, the minimal lethal herbicide dose method (MLHD). All varieties have been calculated for environmental impact as well as practical and economical means. These studies reveal crop losses due to improper weed control as well as losses due to herbicide stress. Detailed information on concentration depending impact of several herbicides have been correlated to their control of different weeds and the achieved yield. Two contrary effects influencing the total yield have been identified. The novel strategy is based on the knowledge of these complex effects which finally led to a well practicable and highly economic strategy that enables onion farmers to control weeds while reducing the amounts of herbicides down to approximately 20%.  相似文献   

19.
Laboratory studies were conducted to evaluate effects of selected herbicides on hatching of free eggs of the soybean cyst nematode, Heterodera glycines. The herbicides used were Atrazine (atrazine), Basagran (bentazon), Bladex (cyanazine), Blazer (acifluorfen), Command (clomazone), Lasso (alachlor), Sonalan (ethalfluralin), and Treflan (trifluralin). Treatments comprised two concentrations of commercial herbicide formulations and deionized water and 3.14 mM zinc sulfate as negative and positive controls, respectively. Eggs were extracted from females and cysts, surface disinfested, and incubated in herbicide or control solutions at 25 ± 2 C in darkness. Hatched second-stage juveniles were counted every other day for 24 days. Hatching of H. glycines eggs in 50 and 500 μg/ml Blazer was 42 to 67% less than that in deionized water and 6l to 78% less than that in zinc sulfate solution. Zinc sulfate significantly increased hatching activity in 50 μg/ml but not 500 μg/ml Blazer. The other herbicides tested at various concentrations had no significant effect on egg hatching. The specific component of Blazer inhibiting egg hatching is unknown. Suppression of hatching by Blazer indicates that this postemergence soybean herbicide may have a potential role in managing H. glycines.  相似文献   

20.
Populations adapted to locally stressful environmental conditions are predicted to carry costs in performance and fitness, particularly when compared to non-stress adapted populations in the absence of stress. However, empirical observations found fitness costs incurred by stress-resistant genotypes are often ambiguous or absent. Compensatory evolution may purge genotypes with relatively high costs over time, resulting in the recovery of fitness in a stress-resistant population. We assessed the magnitude of adaptation costs over time to test for a reduction in negative genetic effects by compiling published data on measures of fitness from plant populations inhabiting mine tailings and populations adapted to herbicides. Heavy metal contaminated sites represent a stress that is immediate and unchanging; herbicides represent a stress that changes over time with dosage or the type of herbicide as treated populations become more resistant. To quantify costs, for each comparison we recorded the performance of plants from stress and non-stress environments grown under benign conditions. Time since the initiation of the stress was determined to test whether costs change over time. Costs were overall constant through time. The magnitude of cost were consistent with trade-offs for heavy metal resistance and certain herbicide mechanisms (triazine and resistance via P450 enzyme), but not for other herbicides where costs were inconsistent and appear to be low if not absent. Superior stress-resistant populations with higher performance than non-stress populations were found from both herbicide and metal stress, with some extreme cases early from time since initiation. There was an increasing benefit to cost ratio over time for herbicide resistant populations. We found that adaptation to stressful environments is generally costly except in herbicide resistance, and that costs are not diminished over time. Stress-resistant populations without costs also arise infrequently, though these populations may often be restricted from spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号