首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以蔗渣(ZZ)为碳源、聚磷酸铵(APP)为酸源和气源、乙烯醋酸乙烯酯共聚物(EVA)为基体树脂制备EVA/ZZ/APP复合材料,并采用极限氧指数(LOI)、垂直燃烧测试(UL 94)、锥形量热仪测试(CCT)、烟密度测试(SDT)等手段研究了ZZ与APP的配比对EVA/ZZ/APP复合材料的燃烧特性与生烟性能的影响。LOI和UL 94的结果显示:EBA4的LOI值最高,达到25.8%,并且UL 94测试通过V-0级。CCT结果显示:EBA1的热释放速率、质量损失、烟生成速率与其他样品相比均有显著降低;烟密度结果显示:在点火和未点火情况下,蔗渣均不能提高EVA/ZZ/APP复合材料的比光密度参数。  相似文献   

2.
通过熔融共混法制备了氢化苯乙烯-丁二烯-苯乙烯(SEBS)/聚丙乙烯(PP)/Al(OH)3/有机蒙脱土(OMMT)复合材料,并采用锥形量热仪、拉伸测试仪等测试了材料的阻燃性能和力学性能。测试结果表明,添加Al(OH)3,使SEBS/PP/OMMT复合材料的热释放速率、峰值热释放速率和总热释放显著降低,且随着Al(OH)3添加量的增加,复合材料的峰值热释放速率降低愈明显;体系中OMMT和Al(OH)3添加量(质量分数)均在10%时复合材料的综合性能最佳。  相似文献   

3.
选用可膨胀石墨(EG)和聚磷酸铵(APP)为阻燃剂,过渡金属氧化物(Cu2O、Fe2O3、Ni2O3、Co2O3)为协效剂,APP、EG和过渡金属氧化物的质量比固定为15: 13: 2,总添加量为30 php,制备阻燃硬质聚氨酯泡沫塑料(RPUF)。使用极限氧指数(LOI)、垂直燃烧(UL-94)和锥形量热(Cone)测试,研究不同种类的过渡金属氧化物对RPUF/APP/EG泡沫阻燃性能和烟气释放的影响。LOI和UL-94垂直燃烧结果表明,加入相同添加量(2 php)的过渡金属氧化物不同程度地改变了RPUF/APP/EG的阻燃性能,其中只有Cu2O、APP和EG复配能进一步提高RPUF/APP/EG的LOI至25.5%,表现出协同阻燃效果,而其他过渡金属氧化物的加入都或多或少地降低了材料的LOI值。Cone测试结果表明,RPUF/15APP/13EG/2Cu2O阻燃泡沫的总热释放量和烟气产生量与RPUF/15APP/15EG相比均得到明显降低,降幅分别为22%和20%。  相似文献   

4.
对Ⅱ型聚磷酸铵(APP-II)和三(2-羟乙基)异氰尿酸酯(赛克)协同阻燃聚丙烯进行了研究。结果表明,APP-II和赛克以质量比为2.5∶1复合而成的阻燃剂对PP具有良好的协同阻燃作用。当该阻燃剂添加量为30%(质量分数)时,PP的极性氧指数(LOI)为30.7%,阻燃级别达FV-0级,燃烧时的热释放速率、质量损失速率和总热释放量明显降低。热重和燃烧残余物分析结果表明,高温下APP能够促使三(2-羟乙基)异氰尿酸酯(THEIC)和PP成炭,而APP和THEIC分解释放出的氨气使炭层膨胀,由此形成的致密膨胀炭层通过隔绝作用而产生阻燃和抑烟作用。  相似文献   

5.
以季戊四醇磷酸酯(pentaerythritol phosphate, PEPA)和玻纤为改性剂,制备了季戊四醇磷酸酯/玻纤改性酚醛泡沫. 利用热重分析、极限氧指数、锥形量热仪对泡沫材料燃烧行为进行了分析. 测试结果表明:加入3%的PEPA,改性酚醛泡沫氧指数值增加了38%;加入3%PEPA和1%的玻纤后,改性酚醛泡沫氧指数值增加了26%;PEPA的加入能明显提高改性酚醛泡沫的初始分解温度和残炭量. 与未改性酚醛泡沫相比,PEPA改性和复合改性酚醛泡沫的最初燃烧的热释放速率分别下降47%和36%,热释放总量降低约50%,能有效降低改性酚醛泡沫引起火灾的可能性和火灾危险中的燃烧程度. 同时,PEPA改性和玻纤复合改性能显著降低酚醛泡沫质量损失速率、有效燃烧热量和烟释放速率,从而有效抑制酚醛泡沫燃烧时烟气的产生,降低其火灾危险性.  相似文献   

6.
ABS/PA6合金的无卤膨胀性阻燃研究   总被引:6,自引:3,他引:3  
以聚磷酸铵(APP)为酸源, 利用ABS/PA6合金中PA6为炭源对ABS/PA6合金进行膨胀型阻燃研究,探讨了不同成炭协效剂与APP复配对合金阻燃性能的影响,这些成炭协效剂包括季戊四醇笼状磷酸酯(PEPA),热塑性酚醛树脂(TPPFR),环氧树脂(E-44)和分子筛4A. 结果表明,PA6具有较好的成炭作用, 当APP含量为25%时,阻燃合金体系的极限氧指数可达29,UL-94测定达V-1级别,APP含量为35%时,UL-94测定达V-0级别.而以5t%的季戊四醇笼状磷酸酯(PEPA)或环氧树脂(E-44)与20%APP复配, 或以3%分子筛4A与22%APP复配都可以大大提高体系的阻燃性能和高温下的残炭量, 使阻燃体系氧指数达到30以上, UL-94测定达V-0级别. SEM形貌分析显示体系燃烧表面都形成了膨胀、均匀、致密的炭层结构.  相似文献   

7.
针对尼龙6(polyamide6,PA6)纤维的易燃问题,本文制备了一种新型氮磷协效阻燃剂,通过挤出造粒共混制备尼龙阻燃母粒,采用纺丝机进行熔融纺丝,制备出阻燃改性PA6纤维,采用傅里叶变换红外光谱(fourier transform infrared spectra, FTIR)、X射线衍射仪(X-ray diffractometry, XRD)、热重分析仪(thermogravimetric analysis, TGA)和差示扫描量热仪(differential scanning calorimetry, DSC)对纤维结构进行表征,同时对PA6纤维红外光谱、热性能和XRD进行分析,并对改性PA6纤维的阻燃性能与机械性能进行测试。实验结果表明,随着阻燃剂添加量的增大,PA6的LOI值逐渐增大,当添加量达到12%时,极限氧指数达到31.5%,极大地提高了PA6的阻燃性能;另外,加入阻燃剂后,PA6纤维的拉伸断裂强度有一定程度的下降,并且随着阻燃剂质量分数的增加,拉伸强度下降越明显。结果表明,阻燃剂的加入较大提高了PA6纤维的阻燃性能,降低了PA6的结晶度,在一定程度上降低了拉伸断裂强...  相似文献   

8.
采用溶剂热法制备磁性四氧化三铁(Fe3O4)纳米粒子,随后利用改进的溶胶-凝胶法制备四氧化三铁与二氧化硅复合纳米粒子(Fe3O4@SiO2),再以聚乳酸(PLA)为基体,通过熔融共混工艺制备Fe3O4@SiO2/PLA共混材料。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、万能拉伸试验机、熔体流动速率仪(MFR)和振动样品磁强计(VSM)等对共混材料的形貌、结晶结构、热性能、力学性能、熔体流动速率和磁性能进行表征分析。结果表明:添加量为1%(以质量分数计)的Fe3O4@SiO2纳米粒子可在PLA基体中均匀分散,与基体有良好的界面相容性。相比于纯PLA,Fe3O4@SiO2/PLA共混材料的热性能变化不大,当Fe3O4<...  相似文献   

9.
为了研究不同分子量PCL/PLLA共混物结晶行为,文中以二氯甲烷为溶剂对左旋聚乳酸(PLLA)与聚己内酯(PCL)进行溶液共混,制备不同质量比的PCL/PLLA共混物,并利用热台偏光显微镜(POM)和差示扫描量热仪(DSC)对共混物的结晶行为及结晶形貌进行表征与分析。实验结果表明:在PLLA10k中加入PCL2k和PCL10k,PCL的质量分数为10%~20%时对PLLA10k的结晶能力有促进作用;PCL2k/PLLA25k共混物中,随着PCL2k质量分数的增大,促进作用逐渐减小;加入PCL15k后对PLLA25k的结晶能力没有促进作用。POM结果表明,加入PCL后共混物的结晶速率降低,PCL不利于PLLA球晶生长速率的提高,并且PCL10k与PLLA10k共混时会发生宏观的相分离现象。  相似文献   

10.
ABS/PA6合金的无卤膨胀型阻燃研究   总被引:1,自引:0,他引:1  
以聚磷酸铵(APP)为酸源, 利用ABS/PA6合金中PA6为炭源对ABS/PA6合金进行膨胀型阻燃研究,探讨了不同成炭协效剂与APP复配对合金阻燃性能的影响,这些成炭协效剂包括季戊四醇笼状磷酸酯(PEPA),热塑性酚醛树脂(TPPFR),环氧树脂(EP)和分子筛4A。 结果表明,PA6具有较好的成炭作用, 当APP含量为25%时,阻燃合金体系的极限氧指数可达30,UL-94测定达V-1级别,APP含量为35%时,UL-94测定达V-0级别。而以5wt%的季戊四醇笼状磷酸酯(PEPA)或环氧树脂(E-44)与20wt%APP复配, 或以3 wt%分子筛4A与22wt%APP复配都可以大大提高体系的阻燃性能性和高温下的残炭量, 使阻燃体系氧指数达到30以上, UL-94测定达V-0级别. SEM形貌分析显示体系燃烧表面都形成了膨胀、均匀、致密的炭层结构。  相似文献   

11.
通过熔融共混法制备了含有不同含量芳纶纤维(AF)和聚钛酸丁酯(BTP)的热塑性聚氨酯弹性体(TPU)复合材料,并研究了AF和BTP在提高TPU火灾安全性方面的协效性。通过氧指数、锥形量热仪、烟密度测试仪研究样品的阻燃生烟特性,通过热重分析研究样品的热分解特性。锥形量热仪实验结果表明:AF与BTP能够明显降低样品的热释放速率(HRR)、总热释放速率(THR)、烟释放速率(SPR)、总烟释放(TSR)和烟因子(SF),并且能够提高成炭量,其中含有0.50%AF和0.50%BTP的样品(AF/BTP~(-2))的热释放速率峰值(pHRR)仅为409kW·m~(-2),相比TPU样品和AF样品分别下降73.0%和49.8%,炭渣质量也达到了14.6%,高于纯TPU的8.8%。烟密度测试结果表明:BTP的添加进一步提高了燃烧时的光通量。热重分析实验表明:BTP水解生成的TiO_2能够进一步促进成炭,改善炭层质量,从而起到阻燃抑烟的效果。  相似文献   

12.
以壳聚糖(CS)为阳离子溶液,以芳纶纤维(ANF)为阴离子溶液,通过层层自组装技术阻燃整理棉织物,通过锥形量热仪测试(CCT)、微型量热仪测试(MCC)、热重-红外联用测试(TG-IR)研究阻燃棉织物的火灾安全性能。锥形量热仪(CCT)的结果表明:芳纶纤维/壳聚糖阻燃棉织物的热释放速率峰值(PHRR)比纯棉织物降低5.5%,CO2释放速率降低9.5%,总生烟量(TSP)、烟释放速率峰值(PSPR)都有所降低;微型量热仪(MCC)测试的结果表明:芳纶纤维/壳聚糖阻燃棉织物的热释放速率峰值比纯棉织物的热释放速率峰值降低57%;TG-IR测试表明,芳纶纤维/壳聚糖阻燃棉织物具有较好的脱水成炭的能力。测试结果可以推断出芳纶纤维/壳聚糖阻燃棉织物的主要阻燃机理为气相阻燃机理,说明芳纶纤维/壳聚糖阻燃棉织物的阻燃性能、抑烟性能和火灾安全性能显著提高。  相似文献   

13.
为提高热塑性聚氨酯(TPU)的阻燃性能,以107硅树脂为阻燃剂,制备了系列阻燃热塑性聚氨酯复合材料。通过锥形量热仪(CCT)、烟密度仪和极限氧指数仪(LOI)等手段对复合材料的燃烧性能、生烟特性等进行研究。锥形量热仪实验结果表明,107硅树脂能够使TPU复合材料的热释放速率、总热释放、生烟速率等参数均有显著降低。其中,含0.2%107硅树脂的复合材料的热释放速率峰值为850kW·m-2,比纯TPU的热释放速率峰值(1 550kW·m-2)降低了45%。此外,107硅树脂还能够显著提高TPU复合材料炭渣质量。烟密度实验结果表明,TPU复合材料的光通量比纯TPU要降低很多。氧指数实验表明,107硅树脂不能明显提高TPU复合材料的氧指数。  相似文献   

14.
在不添加相容剂的情况下,将PA6与不同质量分数的热致聚酰胺液晶(TLCP)在Haake转矩流变仪上共混得到PA6/TLCP复合材料,并对其相形态、拉伸性能及断面形貌进行了表征。由于TLCP的分子与PA6分子之间的相互作用,添加少量的TLCP(w(TLCP)≤10%)可以与尼龙直接增容,而不出现相分离的现象。加入质量分数为5%的TLCP,复合材料的拉伸强度较纯PA6提高了5.2%,弹性模量提高38.3%,断裂伸长率提高逾280%,拉伸断面形貌出现明显的"脆-韧"转变。但TLCP的质量分数进一步增加到15%时,因为TLCP无法进一步有效地分散到PA6的内部而发生自团聚,形成应力点和相分离,复合材料的力学性能呈下降趋势,故加入适当的TLCP可以有助于提高共混物的韧性,并保持拉伸模量。  相似文献   

15.
采用硅烷偶联剂KH550(AMEO)无水条件下改性聚磷酸铵(APP),并用于阻燃热塑性聚氨酯弹性体(TPU)。通过扫描电镜-能谱分析(SEM-EDS)手段研究了APP@AMEO的结构与元素分布特点。并且通过锥形量热仪(CCT)、微型量热仪(MCC)、烟密度仪(SDT)和热重红外联用(TG-IR)等手段研究了阻燃TPU的燃烧和热降解性能。CCT结果表明:APP@AMEO能够明显降低TPU复合材料的热释放速率(HRR)、总热释放(THR),生烟速率(SPR)等,其中含有质量分数为12.5%APP@AMEO的TPU复合材料(TPU/APP-2)的HRR峰值比含相同含量APP的TPU复合材料(TPU/APP)的HRR峰值降低了8.7%。SDT结果表明:无焰条件下APP@AMEO能够使得TPU复合材料的光通量(LF)显著提高。TG-IR结果显示:APP@AMEO不仅能够显著提高TPU的热稳定性,而且能够降低有毒有害气体的生成。  相似文献   

16.
将正硅酸乙酯(TEOS)作为阻燃剂,以提高硬质聚氨酯泡沫(RPUF)的火灾安全性能。采用傅里叶变换红外光谱仪(FT-IR)对其进行表征,根据锥形量热仪测试(CCT)、微型量热仪(MCC)、热重分析(TG)、热重-红外联用(TG-IR)和极限氧指数(LOI)测试RPUF复合材料火灾安全性能。CCT结果表明,RPUF/TEOS复合材料的热释放速率峰值(PHRR)降低。RPUF/TEOS1.0的点燃时间与纯RPUF相比延长了7倍,复合材料的CO和CO2的峰值释放速率均降低。RPUF/TEOS2.0烟释放速率峰值(PSPR)降低了35%。RPUF/TEOS1.0的火灾性能指数(FPI)是纯RPUF的7.42倍,而火灾蔓延指数(FGI)是纯RPUF的0.24倍。RPUF/TEOS复合材料的极限氧指数(LOI)值均高于纯RPUF。TEOS的加入使RPUF/TEOS复合材料的炭层更加稳定与致密,抑制了热和氧的传递。因此,TEOS的引入提高了RPUF复合材料的火灾安全性能。  相似文献   

17.
以聚乙烯接枝马来酸酐(PE-g-MAH)作为反应型增容剂,采用熔体共混直接纺丝的方法制备出PA6/LDPE共混纤维,溶出LDPE基体相,获得不同直径的PA6纳米纤维.通过扫描电镜(SEM)和差示扫描量热(DSC)测试,研究了牵伸倍数、相容剂以及混流板对共混纤维的剥离性能、PA6纳米纤维的直径以及结晶度的影响.结果表明:加入3.5%的相容剂能使PA6超细纤维的直径降低到180 nm以下;增加混流板的组数,导致PA6纳米纤维之间粘连,不易剥离;提高共混纤维拉伸倍数,PA6纤维的直径降低且结晶度增加.在PA6质量分数为55%、相容剂质量分数为3.5%条件下,加入一组混流板,可制备出纤维平均直径在100 nm左右且分布均匀的PA6纳米纤维.  相似文献   

18.
为研究铝酸锌对膨胀型防火涂料的阻燃消烟作用,以及进一步研究铝酸锌对膨胀型防火涂料的抑烟机理.文中在以聚磷酸胺、季戊四醇及三聚氰胺为膨胀阻燃体系的防火涂料中添加不同加量的铝酸锌抑烟协效剂,通过锥形量热仪测试添加铝酸锌后的膨胀型防火涂料的热释放速率(HRR)、总释热量(THR)、生烟速率(SPR)、总生烟量(TSP)等性能参数,对其进行阻燃抑烟研究.结果表明添加铝酸锌的加入不仅提升了涂料的防火性能,并且有效减少的烟气生成量,降低了CO生成量,提高了抑烟性能.当添加6%的铝酸锌时对膨胀型防火涂层抑烟效果最佳,最大热释放速率为2.90 k W/m2,生烟总量为0.7 m2.  相似文献   

19.
采用差示扫描量热仪(DSC)和动态热机械分析(DMA)研究了由不同配比的尼龙6(PA6)与超高分子量聚乙烯/高密度聚乙烯(UHMWPE/HDPE)所形成的共混物的热性能.结果表明。共混物中PA6和UHMWP/HDPE组分的结晶和熔融是独立的,但相互影响较大.PA6和UHMWPE含量的增加对共混物的初始模量有显著影响.  相似文献   

20.
为了研究功能化改性聚酰胺6(PA6)纤维的可纺性与加工性能,以新型架状硅酸盐(QE粉)为改性剂对PA6进行共混改性,并以共混改性后的母粒与纯PA6为原料制备得到QE/PA6并列纤维,采用毛细管流变仪对QE/PA6共混物的拉伸流变性能进行研究,利用扫描电镜(SEM)、XL-2纱线强伸度仪对QE/PA6并列纤维的表面形态及力学性能进行表征。研究结果表明:QE/PA6共混熔体为拉伸变稀型流体,共混熔体的拉伸黏度和拉伸应力随着QE粉含量的增加而增大,当拉伸应变速率为421.14/s,QE粉质量分数为1 wt%、2 wt%和3 wt%时,复合材料拉伸黏度较纯PA6分别提高28.26%、46.74%和67.39%;共混熔体的拉伸黏度随温度的升高而下降,QE粉的引入提高了QE/PA6复合材料熔体的拉伸流动活化能,使得拉伸黏度对温度的敏感性提高;采用纺丝、牵伸一步法成功制得QE/PA6并列纤维,QE粉末在纤维表面分布均匀,与纯PA6并列纤维相比,QE/PA6并列纤维同样具有良好的强伸性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号