首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究锂离子电池的热特性,以3 200 m A·h、3.67 V圆柱形三元材料锂电池为研究对象,进行了不同温度、不同充/放电倍率的热特性试验和低温加热试验.试验结果表明:随着充/放电电流的增大以及环境温度的降低,电池温度快速升高,低温下加热可以提高锂离子电池的充/放电性能.  相似文献   

2.
以18650锂离子电池为研究对象,利用简化的Bernardi生热模型和混合功率脉冲特性(HPPC)测试,进行相关的热特性实验,对锂离子电池在放电过程中的温升、生热量和直流内阻等特性进行研究.结果表明:电池在放电过程中的温升和生热量与放电倍率呈二次关系;电池在放电过程中的生热量以不可逆热为主,可逆熵变热所占比例小于5.4%,放电倍率越大,不可逆热所占比例越大;电池的内阻在较低的温度和荷电状态(SOC)下变化明显,随着温度的降低,电池的直流内阻不断增大,放电初期,电池的内阻基本保持不变,当电池的SOC降低到40%以下时,电池的内阻逐渐增大.研究结果可以为电池模组及电池包瞬态热模型的建立和分析提供依据.  相似文献   

3.
能耗和环境问题促使电动汽车快速发展, 锂离子电池在电动汽车储能系统中具有重要的作用. 锂离子动力电池的特性与环境温度紧密相关, 倍率放电容量特性、荷电状态-开路电压曲线是反映电池基本性能的重要特性指标, 也是电池管理系统设计需要参考的重要参数. 该文对圆柱18650三元锂离子动力电池进行了相关的性能试验, 研究了单体和电池组开路电压变化规律、不同放电倍率下的电池容量和不同温度下的电池容量, 为荷电状态估算方法的研究及电池管理系统设计积累了数据.  相似文献   

4.
为改善锂离子电池硅负极材料的电化学性能,利用镁热还原法制备了不同铁掺杂量的多孔硅/硅铁合金复合材料,并对其结构以及在锂离子电池中的充放电性能进行了研究.材料均呈现多孔结构,硅铁合金均匀分布在孔道内部.多孔硅/硅铁合金复合材料具有较好的循环稳定性,在0.1C倍率下循环100圈后可逆容量为1 133.5 m A·h/g,容量保持率为66%;在1C倍率下可逆容量仍可以达到776.9 m A·h/g.  相似文献   

5.
为提高锂离子电池正极材料硅酸亚铁锂(Li2FeSiO4)的容量和倍率性能,以酒石酸为碳源、尿素为氮源,用溶胶凝胶法制备氮掺杂碳包覆硅酸亚铁锂复合材料(NCLFS),通过元素分析、XRD、SEM、拉曼光谱、XPS、恒电流充放电测试和交流阻抗谱等方法对样品的结构及电化学性能进行表征。结果表明:NCLFS复合材料由平均粒径为23 nm的Li2FeSiO4纳米晶组成,较小的粒径能够缩短锂离子扩散路径,提高锂离子的迁移速率;N的引入,提高了NCLFS材料的电导率;与无尿素掺杂的CLFS材料相比,NCLFS复合材料表现出了更高的比容量、优异的倍率性能和循环稳定性,0.2 C放电倍率下,放电比容量高达223.2 mA·h/g(相当于1.34Li+),循环100周后仍能保持192.9 mA·h/g。  相似文献   

6.
为了获取能高效准确探究锂离子电池(LIBs)及模组机械完整性的方法,通过实验探究各荷电状态(SOC)下圆柱锂电池单体在受到不同方向机械外载作用下的机械响应及电化学失效情况. 基于实验结果提出均质化电池单体材料模型,建立具有SOC相关性、各向异性的电池单体模型,并提出适用于该模型的2种电池单体失效力学判据. 基于该单体模型获取2种典型堆积形式下的电池模组模型,并提出基于该细致模组模型的均质化建模方法,进一步提取出特定堆积方式下的电池模组均质化材料模型,建立相应的均质化电池模组模型,并通过电池模组力学加载实验进行验证. 实验结果显示,该均质化电池模组模型能够高效并准确地预测电池模组在复合机械加载条件下的响应.  相似文献   

7.
高容量的过渡金属氧化物要想替代目前低容量的商业碳作为锂离子电池负极材料,必须设计解决碎化问题和电导率问题。本文通过热解和水热氧化法合成了N掺杂的碳基Co/Co3O4@C纳米粒子核壳结构复合材料。通过调整水热时间,可以获得结构完整、形态规则、尺寸均匀的产品。其作为锂离子电池电极材料,在0.1A/g恒流循环50次后,放电容量稳定在620 mA·h/g(碳质量分数为56.8%),高于其理论比容量,在2A/g恒流下250次循环后,可逆容量为572 mA·h/g,库仑效率可保持在99.8%左右。这说明具有良好分散性的N掺杂碳基Co/Co3O4@C纳米粒子核壳结构具有优良的结构稳定性和电导率,作为负极材料有希望应用于高容量、大功率的锂离子电池当中。  相似文献   

8.
为了提高TiO_2的导电性和材料的分散性,进而提高材料的倍率性能和循环性能,将二氧化钛与石墨烯复合,通过水热法合成了二氧化钛/石墨烯(TiO_2/rGO)复合材料,并对材料的形貌进行了表征,测试了材料用于锂离子电池的电化学性能.结果表明:与石墨烯复合后材料的比容量和倍率性能均升高,在电流密度为0.1C(C=150 mA/g)下,初始放电容量为374 mAh/g,50周后的放电比容量仍保持在165 mAh/g,循环保持率为44%,远高于同种方法下合成的二氧化钛样品50周后的比容量50 mAh/g和保持率17%.  相似文献   

9.
通过两步水热法合成了可用作锂离子电池负极材料的二氧化锡-石墨烯-炭(SnO2-Gn-C)三元复合物.采用X射线粉末衍射(XRD)、透射电镜(TEM)和电化学测试研究了SnO2-Gn-C复合物的晶型结构、形貌和电化学性能,并考察了反应温度和Sn/Gn物质的量比对复合物电化学性能的影响.实验结果显示,SnO2-Gn-C复合物在200mA· g-1电流密度下初始放电比容量达到1 225mA·h·g-1,50次充放电循环后比容量仍有约229mA.h·g-1.SnO2-Gn-C良好的电化学性能主要归结于大比表面积的石墨烯对SnO2纳米粒子的良好分散作用、石墨烯和炭的高导电性以及炭包覆后的复合物充放电时体积效应的显著减小.  相似文献   

10.
本文以Li2CO3 、MnO2为原料,采用微波热处理合成锂离子电池正极材料LiMn2O4,研究了热处理温度,Li/Mn摩尔比对产物结构和电化学性能的影响,同时研究了微波热处理和传统热处理两种加热方式的差别.通过X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试分别对产物的结构、形貌及电化学性能进行表征,结果表明:采用微波法在750℃保温15 min,快速地制备出尖晶石型LiMn2O4,纯度高,尺寸分布均匀,约100-300 nm;于0.1C倍率下,以微波法制备的正极材料首次放电比容量可达112.38 mA·h/g,1C倍率充放电50次循环后,容量保持率为91.6%;以传统方法制备的正极材料0.1C倍率下首次放电比容量为94.07 mA·h/g,1C倍率充放电50次循环后,容量保持率为71.4%  相似文献   

11.
为了满足全国电动方程式赛车(FSEC)对电池的性能要求,模拟比赛时对耐久性能、弯道性能和加速性能的工况要求,对NCM三元锂离子电池在不同的充放电工况下的特性进行研究与评价.对比该电池在不同倍率下的放电特性,以及不同倍率放电时内阻的变化情况.结果表明:FSEC方程式赛车采用NCM三元锂离子电池,充电时内阻小温升可控,但在弯道性能和加速性能工况下放电时,必须要做好散热设计才能满足比赛的要求.  相似文献   

12.
磷化锡(Sn4P3)作为锂离子电池负极材料,虽然理论比容量(1.255×103 m A·h/g)较高,但是在充放电过程中会产生巨大的体积膨胀和颗粒团聚现象,导致容量衰减严重。将石墨烯作为骨架、无定形碳材料作为包覆层,成功地制备了碳包覆Sn4P3-石墨烯复合材料(Sn4P3-G@C)。Sn4P3-G@C在电流密度为0.05 A/g时,循环70次后放电比容量可达0.521×10-3 m A·h/g;在电流密度为0.10 A/g时,循环150次后放电比容量可达0.433×10-3m A·h/g;在电流密度为0.50 A/g时,稳定循环300次,放电比容量可达0.330×10-3 m A·h/g。片层石墨烯和碳包覆层的共同存在不仅使Sn4P3的结构更加稳定且导电性提升,而且有效缓解体积膨胀,...  相似文献   

13.
锂离子动力电池的温升现象严重影响电池的寿命和汽车的安全性.本文分析了锂离子动力电池的生热机理,进行了热效应模型的建立和热物性参数的确定.建立了电池三维模型并进行网格划分,选择稳态流动的求解方法及设置合理的边界条件,最后对电池进行2 A、3 A、4 A和5 A的恒流热分析.仿真结果表明不同恒流放电下,电池的最低温度、最高温度和最大温差都不同,放电电流越大,电池的最低温度、最高温度和最大温差都随之增大.  相似文献   

14.
为了利用简单的生产工艺制备性能优异的锂离子电池负极材料,采用电弧熔炼-甩带的工艺制备出铁钒合金条带,再通过氧化还原方法成功制备出纳米多孔铁掺杂钒氧化物(Fe-VO_x)复合材料,对材料物相和结构进行了表征,并且对比分析了在不同还原温度下纳米多孔Fe-VO_x复合材料的电化学性能。结果表明:在还原温度为500℃、5%H_2/Ar混合气氛下,材料电化学性能最优,在电流密度为0.1 A/g下,初始放电比容量为563.4 mA·h/g,在循环100圈后的放电比容量仍能达到441 mA·h/g,循环容量保持率达到78.2%,远大于石墨的理论比容量372 mA·h/g。这说明纳米多孔铁掺杂钒氧化物复合材料能够有效提高锂离子电池的能量密度,并且具有良好的电化学性能。  相似文献   

15.
电动汽车用锂离子电池低温性能和加热方法   总被引:1,自引:0,他引:1  
为提高锂离子动力电池的低温充放电性能,以锰酸锂80 Ah电池单体为研究对象,进行低温下电池充放电特性实验研究,提出宽线金属膜加热方法,并对-40 ℃下的电池单体进行加热和放电实验,采用不同的预热时间,对加热后电池放电性能进行比较实验.结果表明:低温下,电池的充放电性能显著衰减,采用宽线金属膜加热方式能显著提升电池的低温放电性能;同时,通过对比实验发现,仅增加预热时间对提高低温电池放电性能的效果有限.  相似文献   

16.
正极添加剂对锂-二硫化铁扣式电池的影响   总被引:1,自引:0,他引:1  
研究了Cu粉、Zn粉等正极添加剂对锂-二硫化铁扣式电池开路电压、放电电压和放电容量的影响。实验结果表明:正极加入质量分数为3%的Cu粉添加剂时,试验电池的开路电压为1.92 V,常温1 mA放电容量为192 mA.h,放电电压平台为1.48 V。-20℃和60℃下分别能放出设计容量的89%和121%。高温储存后放电电压平台为1.47 V,放电容量为188 mA.h。研究表明:Cu粉或Zn粉的加入,改善了正极二硫化铁的导电性,使锂离子的扩散速率加快,放电效率提高;高温储存后,添加剂的存在使金属锂表面的聚合物膜不会破坏,电池高温储存性能稳定。  相似文献   

17.
以三元动力电池模组为研究对象,通过研究自然对流、相变材料(Phase Change Materials,PCM)、相变材料/导热翅片3种不同散热技术,分析3种不同热管理系统(Battery Thermal Management System,BTMS)在室温(25℃)和高温(45℃)工况下不同恒定倍率放电及充放电循环过程中的温度变化规律、产热速率及温升速率,测试整个电化学反应进程中的最大温度及最大温差技术指标,深入研究不同散热介质对于电池组安全性能的影响机理。结果表明,无论室温/高温环境条件恒定倍率放电和大电流充放电循环工况,相变材料/导热翅片电池组通过对电池组侧面和正负极处进行强化传热,具有明显有效的降温和均衡温度的能力,可以实现电池组最高温度的快速降低,并维持电池模组最高温差在5℃以内,满足动力电池模组的散热需求。  相似文献   

18.
选用锰酸锂(Li Mn2O4)、复合镍钴锰酸锂(Li Ni1/3Co1/3Mn1/3O2)按不同比例混合作为正极,软碳作为负极材料,制备复合镍钴锰酸锂与锰酸锂混合型锂离子全电池(简称混合型锂离子全电池),选择质量分数为15%,35%的Li Mn2O4与Li Ni1/3Co1/3Mn1/3O2混合作为正极活性物质进行实验,研究Li Mn2O4对锂离子全电池充放电性能、安全性能、倍率放电性能、脉冲功率特性等的影响。结果表明:Li Mn2O4质量分数为35%时,既提升了锂离子全电池的电性能,又保证了其较高的安全性能;常温下电流为1I1(I1代表1 h率放电电流)充放电循环预计寿命可达到1 500周,55℃高温下电流为0.5I1充放电循环335周容量保持在92%以上;在放电深度(DOD)10%~80%内10 s脉冲充放电状态下,混合型锂离子全电池阻抗均在9 mΩ以下,50%DOD时的10 s放电比功率在700 W/kg以上。  相似文献   

19.
以废旧汽车刹车片为原料,在N2气氛下600~1 000?C热解制得硬炭材料。以酚醛树脂为对比实验,通过热重分析(Thermal gravimetric analysis)、扫描电子显微镜(Scanning electron mcroscope)、X射线衍射仪(X-ray diffraction)、红外光谱(Fourier transform infrared spectroscopy)分析、拉曼光谱(Raman spectroscopy)分析等测试手段对硬炭进行表征,并分别对将2种材料作为锂离子电池负极材料制备的扣式电池进行充放电性能测试。测试结果表明:热解温度对硬炭结构和充放电性能有一定的影响,在600~1 600?C温度范围内,热解碳在1 300?C条件下表现最优充放电性能,可逆容量和库伦效率分别为112.05 m A·h/g和52.31%,倍率和循环容量保持率分别达到87.23%和64.39%;对比酚醛树脂在最佳热解条件1 200?C的充放电数据,即可逆容量和首次库伦效率分别为189.26 m A·h/g和58.45%,倍率和循环的容量保持率分别为51.52%和55.12%。因此,废旧汽车刹车片热解碳在实际应用中具有较好回收价值。  相似文献   

20.
以PEG为新型碳源,采用简单固相法合成了锌离子掺杂的锂离子电池正极材料LiMn0.95Zn0.05PO4/C。采用XRD和电化学测试分别研究了预分解温度对LiMn0.95Zn0.05PO4/C结构及性能的影响。实验结果表明预分解温度为500℃合成的LiMn0.95Zn0.05PO4/C具有最好的放电性能,0.02 C首次放电比容量可以达到131.7 mA.h.g-1,达到文献较好水平。考察了最佳条件合成样品的倍率性能和循环伏安特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号