首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
不同施氮水平下玉米冠层光谱反射特征分析   总被引:9,自引:0,他引:9  
通过田间试验研究了玉米不同生长期冠层光谱反射率的变化特征,分析了不同施氮水平下可见光区冠层光谱反射率的差异。研究结果表明:受作物群体光和能力的影响,玉米可见光区冠层反射光谱在拔节期达最高点,随后持续降低; 近红外区,苗期反射率最低,在拔节期达最高点,喇叭口期有所降低而在开花吐丝期得到回升,进入灌浆期后又下降。不同施氮水平下,拔节期随施氮水平的增加,叶绿素的强吸收带(430~450和640~660 nm)玉米冠层反射曲线呈下降排列,但在550 nm附近反射率R正常>R偏低>R偏高; 喇叭口期偏低施氮区的冠层反射率在可见光区明显高于其它施氮水平,且偏高和正常施氮区域内光谱反射强度基本相同,显示过量施肥并不会促进作物生长。分析玉米生长期间不同施氮水平下光谱反射率的差异,对监测玉米生长状况,指导田间施肥具有重要的现实意义。  相似文献   

2.
应用可见光-近红外光谱技术研究了三峡库区柑桔园紫色土的光谱特征及其与土壤氮素营养含量的相关性。结果表明,三峡库区柑桔园土壤光谱反射率在可见光区域随波长增加呈直线上升,在近红外短波区域(780~1 750 nm)基本趋于平稳,波动较小,而在近红外长波区域(1 750~2 400 nm)上波动性和反射率均较大,并且在近红外长波段区域的1 416,1 913,2 209 nm处出现了强的吸收峰。土壤有效氮、全氮含量均与光谱反射率呈正相关,与倒数对数光谱成负相关。在可见光541 nm处,土壤有效氮含量与反射光谱一阶导数微分值达最大正相关,相关系数为0.605**,二者响应的最佳拟合方程为y=2E+09x2-3E+06x+890.49(R2=0.5,x为反射光谱一阶导数值)。在近红外长波段1 909 nm处,土壤全氮含量与反射光谱的倒数对数值的相关性最好,相关系数为-0.612**,二者响应的最佳拟合模型为y=1.372 12-2.107 5x+0.859 2(R2=0.4,x为反射光谱倒数对数值)。  相似文献   

3.
玉米生长期叶片叶绿素含量检测研究   总被引:8,自引:0,他引:8  
分析了在正常、偏低、偏高等不同施氮水平下,玉米生长期冠层反射光谱与叶绿素含量的相关关系,结果表明玉米叶绿素含量检测的敏感期为拔节期和喇叭口期.正常施氮水平下玉米冠层光谱反射率与叶绿素含量相关关系高于其他施氮水平,即r正常>r偏高>r偏低.整个生长期由苗期开始二者相关系数绝对值满足先上升后下降,于开花吐丝期达最低后回升的趋势,其中玉米拔节期和灌浆期冠层反射光谱与叶绿素含量呈正相关.选取558,667,714和912 nm,分别对玉米拔节期和喇叭口期建立了MLR和PLSR检测模型,经比较,虽然PLSR模型复相关系数较MLR模型有所降低,但模型鲁棒性得到增强.分析拔节期和喇叭口期各种植被指数与叶绿素含量的相关关系,表明DVI优于其他指数,且拔节期DVI与叶绿素含量呈二项式相关,喇叭口期二者呈指数相关.  相似文献   

4.
温室番茄冠层和叶片光谱特征分析及营养诊断   总被引:2,自引:0,他引:2  
Zhao RJ  Li MZ  Yang C  Yang W  Sun H 《光谱学与光谱分析》2010,30(11):3103-3106
通过温室基质栽培,利用ASD光谱仪和傅里叶光谱分析仪测量了四种营养水平下温室番茄冠层和叶片的光谱反射曲线,并检测了对应叶片的水分含量、叶绿素含量和氮含量,分析了不同营养水平下番茄冠层和叶片的反射光谱变化,并对番茄叶片含水量的敏感波长以及冠层反射光谱的红边波长进行了研究。结果表明:温室番茄冠层反射光谱曲线在可见光550nm左右均有叶绿素的强反射峰,近红外区反射率高于可见光区。在同一生长期,随基质营养水平的提高,番茄冠层反射率在可见光波段不断减小,在近红外波段不断增大,且红边波长位置出现"红移"现象。利用530和760nm特征波长得到的归一化颜色指标NDCI与叶片氮含量有较好相关性,R2为0.7511。  相似文献   

5.
基于光谱技术的水稻稻纵卷叶螟受害区域检测   总被引:8,自引:0,他引:8  
利用光谱技术探索了水稻稻纵卷叶螟虫害的检测。通过分析田间水稻稻纵卷叶螟受害区和对照区冠层反射光谱和一阶微分光谱特征差异发现,可见光区(400~700 nm),550 nm附近中度受害水稻冠层反射率明显低于对照冠层反射率值,重度受害水稻冠层反射率则高于对照区冠层反射率;水稻受害时,叶片受损及干枯导致叶绿素含量降低,对红光波段(600~700 nm)的吸收减小。近红外区(750~770 nm)范围内,受害水稻冠层反射光谱曲线均不同程度出现"尖峰"波动,且光谱曲线红边拐点发生"蓝移"。通过构建样本总体修正曲线,提供了直观判别广域水稻是否受稻纵卷叶螟虫害侵扰的依据。进一步探讨稻纵卷叶螟受害区定性检测参数发现,利用NIR-NDVI特征可以有效地区分对照区和受害区区域,经验证,准确率达70%。  相似文献   

6.
基于光谱波段自相关的水稻信息提取波段选择   总被引:2,自引:0,他引:2  
通过大田试验,使用ASD光谱仪测量水稻不同生育期的冠层光谱,将光谱以10 nm为步长进行合并,再将不同日期光谱的所有波段组合计算相关系数平方(R2),生成R2矩阵,并绘制R2分布图。根据R2越大,光谱波段之间冗余信息越多,R2越小,水稻光谱波段信息含量越多的原则,在所有测量日期中选择出前100个R2最小值对应的波段,将这些波段进行统计分析。结果表明,可见光区域各个波段之间和红外(近红外和短波红外)区域各个波段之间都含有大量冗余信息。水稻信息量丰富的波段主要集中在可见光的长波波段,红边波段,近红外第一和第二峰值波段,以及短波近红外第一峰前区(1 530 nm附近)和第二峰值区(2 215 nm附近)。比较水稻与其他植被对于最优波段的选择,400~410,630~650和1 520~1 540 nm三个波段区间表现为水稻信息提取较为独特的波段。  相似文献   

7.
针对基于固定特征波长的植被指数不能适用于多个生育期叶绿素含量的诊断这一问题,研究优化提出一种基于双波长计算光谱覆盖面积的叶绿素诊断植被指数,用于稳健地诊断多生育期的营养。以拔节期、孕穗期和扬花期的冬小麦为研究对象,采集其325~1 075 nm范围的冠层反射光谱,测定采样样本的叶绿素含量。采用小波去噪和多元散射校正算法对光谱数据进行预处理。通过相关性分析,确定生育期特征波长的迁移范围,进而提出了基于光谱覆盖面积的冬小麦叶绿素含量光谱诊断参数(modified normalized area over reflectance curve, MNAOC)。以信噪比(SNR)和平滑度指标(S)进行综合评价,小波去噪函数的最佳参数为(“sqtwolog”,“mln”,“3”,“db5”)。相关性分析结果表明,生育期特征波段的迁移范围为(700 nm,723 nm)。在分析MNAOC指数对叶绿素含量诊断分辨率的基础上,以0.5 mg·L-1的分辨率建立一元线性回归模型的结果为:拔节期R2c=0.840 1,R2v=0.823 7;孕穗期R2c=0.865 5,R2v=0.817 4;扬花期R2c=0.833 8,R2v=0.807 6。与ratio vegetation index(RVI)等5种双波长植被指数对比表明,由于700和723 nm计算的光谱面积包含了由于生育期导致的光谱动态迁移特征,使得MNAOC指数在模型精度上和多个生育期的普适性上,都优于其他双波长代数运算植被指数,为大田环境冬小麦生育期叶绿素含量诊断提供支持。  相似文献   

8.
不同地类春小麦拔节期冠层光谱与叶绿素差异研究   总被引:1,自引:0,他引:1  
为实现对不同地类春小麦叶绿素含量的无损估测,通过分析春小麦冠层光谱与叶绿素含量的相关性,以及对其红边拐点位置与叶绿素含量做回归分析,分别建立了水浇地和旱地春小麦叶绿素含量估测模型并检验了模型精度。结果表明: (1) 拔节期水浇地和旱地春小麦叶绿素含量差异较大,且前者明显大于后者。虽然各地类春小麦光谱反射率与叶绿素含量均有很好的相关性,但旱地春小麦的相关性在可见光和近红外波段均低于水浇地。(2)在可见光范围,旱地春小麦冠层光谱反射率高于水浇地,而在近红外区则相反。阴坡地由于土壤水分高,春小麦长势较好,冠层光谱特点与水浇地差异不大。(3)建立的不同地类春小麦反射光谱红边拐点位置与叶绿素含量的监测模型表明,水浇地春小麦叶绿素含量的监测可用线性模型,预测精度达94.06%。而旱地则宜用二项式模型,预测精度为97.15%,比其线性模型高10.48%。  相似文献   

9.
用冠层光谱比值指数反演条锈病胁迫下的小麦含水量   总被引:2,自引:0,他引:2  
通过高光谱遥感估测条锈病胁迫下的小麦冠层水分含量。通过人工田间诱发不同等级小麦条锈病,在不同生育期测定感染不同严重程度条锈病的冬小麦冠层光谱、相对含水量(relative water content,RWC) 以及调查小麦条锈病病情指数(disease index,DI)。研究发现随着小麦RWC的减少,冠层光谱反射率在近红外区域(900~1 300 nm)逐渐降低,而在短波红外区域(1 300~2 500 nm)逐渐增大,且RWC与DI间具有强负相关性。对冠层光谱进行平滑处理,利用冠层光谱近红外与短波红外水分敏感波段构建比值指数,然后建立以比值指数为变量的反演RWC线性模型,并分析对比各模型反演RWC的精度以及稳定性,结果发现比值指数R1 300/R1 200反演RWC的精度及稳定性(R2=0.63)都优于其他指数,其线性模型反演绝对误差为3.43,相对误差(relative error,RE)为4.78%。该研究结果不仅为判别小麦病害提供辅助信息,而且也为未来利用高光谱图像反演植物含水量提供理论与方法支持。  相似文献   

10.
分析炭疽病侵染后油茶冠层的可见-近红外光谱特征,探索建立病害胁迫下油茶冠层叶片叶绿素含量的预测模型。通过实地调查病情指数,获取不同病害程度的油茶冠层叶片光谱数据及其叶绿素含量,并对光谱数据进行了一阶微分与滑动平均滤波相结合的预处理,再通过光谱数据重采样,提取敏感波段建立了叶绿素含量的BP神经网络预测模型。结果表明:(1)随着病情的加重,油茶冠层光谱可见光区域的反射峰和吸收谷逐渐消失;红光到近红外陡峭的红边被逐渐拉平;在近红外区域,健康油茶的光谱反射率明显大于感病油茶的光谱反射率。(2)微分光谱484~512,533~565,586~606和672~724nm四个波段是叶绿素吸收和反射的敏感波段。(3)以敏感波段为输入变量建立的BP神经网络模型,其计算出的预测值与观测值之间的相关系数r和均方根误差分别为0.992 1和0.045 8。因此,利用可见-近红外光谱技术预测炭疽病侵染后油茶叶片叶绿素含量是可行的。  相似文献   

11.
植物生长状况是反映环境变化的重要指标,在全球环境变化格局下,研究多环境因子及交互作用对植物的影响尤为重要。为探究植物光谱特征响应环境变化,从而探究环境变化对植物生长状况的影响,同时实现遥感对植物的监测,该研究以东北地区优势树种蒙古栎为研究对象,分析研究了不同光周期、温度和氮沉降交互作用引起的蒙古栎展叶盛期冠层光谱反射特征变化。基于大型人工气候室模拟试验,设置3个温度,3个光周期和2个氮沉降交互处理,每个处理4个重复。当蒙古栎进入展叶盛期时,每个处理选择差异较小的三个重复,使用FieldSpec Pro FR 2500型背挂式野外高光谱辐射仪测量光谱反射率。对不同处理的蒙古栎冠层光谱反射率进行分析,选取NDVI(归一化植被指数)、Chl NDI(归一化叶绿素指数)和PRI(光化学反射指数)3个常用的光谱指数作为辅助分析,同时计算一阶导数光谱以得到红边斜率、红边位置、红边面积等参数。不同处理展叶盛期的蒙古栎光谱反射率趋势大体一致,均符合植物特有的光谱反射特征,在350~680 nm范围内有一个小的波峰,680~750 nm反射率显著上升,750 nm后进入反射平台。结果表明:(1)光周期对于蒙古栎冠层的光谱反射率没有明显的影响;(2)增温会减小蒙古栎冠层在350~750 nm波段处的光谱反射率;(3)施氮会导致蒙古栎展叶盛期350~750 nm波段和750~1 100 nm波段处的光谱反射率降低;(4)增温和施氮的交互作用会显著减小蒙古栎的光谱反射率;(5)通过一阶导数光谱可清晰地指示植物的红边特征。研究结果可为物候变化的监测与影响因素分析提供理论依据。  相似文献   

12.
利用遥感光谱无损、快速分析出氮肥的施用时期和施用模式,对于保护环境、产量及氮肥利用率的提高具有重要意义。利用FieldSpec 4 Wide-Res Field Spectrum radiometer便携式地物光谱仪,测定了不同氮水平下小麦冠层和叶片两种模式光谱特征及红边参数变化规律;提出一个新指数--归一化差异最大指数(normalized difference maximum index,NDMI),并分析其与叶面积指数(leaf area index,LAI)、SPAD(soil and plant analyzer development)值、MDA(malondialdehyde)含量、旗叶氮含量和产量的相关性。结果表明,小麦叶片原始光谱在开花后26 d起800~1 330 nm区间的光谱反射率以N3(1/3底施+1/3冬前追肥+1/3拔节期追肥)处理为最高,N1处理(1/2底施+1/2冬前追肥)次之。主要原因是由冬前和拔节期两个时期均施三分之一氮肥,增强了叶片光合能力。小麦冠层原始光谱,在400~700 nm波段,N2(1/2底施+1/2拔节期追肥)处理最低;在760~1 368 nm波段区间,由于群体结构不同,在开花期至灌浆中期N1处理的光谱反射率最高,N3处理次之;N3处理的冠层光谱反射率在开花后26和33 d最高。建议用400~700和760~1 368 nm波段的冠层原始光谱数据,分别来辨别小麦旗叶含氮量的高低及施肥模式。叶片模式下一阶微分光谱在500~750 nm区间出现两个“峰”,通过峰的位置偏移程度和偏移时期来估测施氮的模式。在670~740 nm区间冠层一阶微分光谱值在开花期最高,开花后10 d的一阶微分光谱值最低。在开花期至开花后10 d N1处理的一阶微分光谱值高于N3处理;灌浆中期至开花后33 d N3处理的一阶微分光谱值高于N1处理。可以通过一阶微分最大值来推测小麦所处的生育期和施肥的方式及施肥时期。在开花期至灌浆中期,冠层反射率一阶导数最大值(FD-Max)N1处理最高,N3处理次之;在开花后26~33 d,N3处理的群体结构较其他处理密,导致其一阶导数最大值一直最高。四个处理叶片一阶导数最大值变化趋势不如冠层显著。四个处理的反射率一阶导数最大值对应的红边位置(REPFD-Max)中,N1和N3冠层REPFD-Max在灌浆中期后偏移显著;在开花后26~33 d,N3处理的群体上层结构密,叶片宽且厚,冬前追施氮肥影响REPFD-Max偏移程度。基于NDVI基础上,筛选出一个新指数--归一化差异最大指数。冠层归一化差异最大指数(CNDMI)与农化参数的相关系数高于叶片归一化差异最大指数(LNDMI),且CNDMI与产量的相关性比LNDMI显著。冠层归一化差异最大指数与旗叶氮含量、SPAD值和MDA含量有着显著的相关性,相关系数r分别为0.812 88,0.928 21和-0.722 17。综上所述,借助光谱数据和红边参数可以推测小麦含氮量的高低,所处的生育期和施氮肥的模式,进而为田间施肥管理及施肥诊断提供依据。CNDMI与小麦产量有着更好的相关性,符合我国资源卫星的光谱波段范围,具有可实际操作性。  相似文献   

13.
以大型喷灌机为平台的近地遥感技术可有效观测作物的生长状态,对田间生产管理和作物水肥需求特性等研究具有十分重要的意义。由于在遥感观测过程中,作物冠层具有二向反射特性,因此不同观测方式会影响遥感观测结果。通过自行搭建的近地遥感系统模拟大型喷灌机平台的实地观测条件,使用双通道光谱传感器获取小麦与玉米冠层的光谱反射率信息,引入变异系数CV对由冠层二向反射特性引起的信息数据变幅进行量化,并采用影响因素权重W分析各观测参数对数据变幅的影响程度。通过获取2019年冬小麦返青期至灌浆期、夏玉米V7-V14生育期的冠层近红外波段(810 nm)和红光波段(650 nm)的反射率数据,分析多种观测因素对比值植被指数(RVI)数据和植被归一化指数(NDVI)数据的影响。结果表明,观测高度(0.5~2.5 m)、观测频率(2~60次·min-1)和移动速度(0~4 m·min-1)与观测结果无显著相关关系(p>0.05),观测时刻(8:00-18:00)、观测天顶角(-60°~60°)和观测方位角(0°~180°)与观测结果相关关系极为显著(p<0.01);小麦和玉米的冠层RVI、NDVI数据获取结果主要取决于冠层覆盖程度,在相同叶面积指数(LAI)情况下观测结果也会因观测时刻、观测方位角和观测天顶角的差异而受到不同程度的影响;冠层光谱反射率信息二向反射特性明显,小麦冠层RVI和NDVI变异系数分别为15%~50%和2%~50%,玉米冠层RVI和NDVI变异系数分别为10%~33%和18%~39%;进行观测时,应尽量选择在太阳天顶角较稳定的12:00-14:00时段,并尽量缩短观测时长,还应选择固定的观测角度,注意阴影效应与热点效应的影响;此外,在小麦返青至拔节期、抽穗至扬花期获取RVI和NDVI时,还应分别注意观测天顶角、观测时刻对测量精度的干扰。研究结果可为快速获取高精度的小麦、玉米冠层光谱反射率数据提供技术支撑。  相似文献   

14.
利用偏最小二乘回归从冬小麦冠层光谱提取叶片含水量   总被引:7,自引:0,他引:7  
通过人为控制灌溉水平,在冬小麦3个发育期(孕穗、开花、乳熟)测定了冠层光谱和叶片含水量(leaf water content,LWC)。针对每期数据,结合偏最小二乘回归和迭代特征去除,建立了基于诊断波段的LWC回归模型。结果表明,叶片水分的光谱响应及反演精度受小麦生长状态的影响。在孕穗、开花和乳熟3个发育阶段,回归模型中光谱数据的最佳利用形式分别为对数光谱、导数光谱和反射率光谱;重要光谱区间为SWIR,NIR和SWIR;模型交叉验证决定系数(R2CV)为0.750,0.889和0.696。研究结论对今后监测冬小麦旱情和开发作物水分遥感产品具有重要的指导作用。  相似文献   

15.
马铃薯冠层光谱响应特征参数优化与生长期判别   总被引:1,自引:0,他引:1  
快速判别马铃薯作物的生长进程是指导田间关键生长期科学水肥管理的重要依据。研究在马铃薯发棵期(M1)、块茎形成期(M2)、块茎膨大期(M3)和淀粉积累期(M4)四个关键生长期,利用ASD便携式光谱仪采集80个样本区的314组作物冠层反射率数据,并同步采集叶片测定叶绿素含量。在光谱数据预处理后,分析了马铃薯不同生长期的光谱反射率变化特征,并初步选取了光谱“峰谷”响应参数,提出了一种基于方差分析与变量减少组合的光谱参数筛选算法(variance analysis combined with variable reduction,VACVR)用于明确光谱学响应的优化指标,采用Kennard-Stone(K-S)法划分样本集,最终基于支持向量机(support vector machine,SVM)方法建立马铃薯关键生长期判别模型。针对光谱数据,首先使用变量标准化(standard normalized variable,SNV)进行光谱预处理,在定性分析了随着生长期的推进马铃薯冠层反射特征的变化趋势的基础上,基于作物生长期动态光谱学响应与峰谷特性选取14个参数,包括:8个位置参数、2个面积参数、4个植被指数参数。采用K-S算法将样本按照3∶1划分为训练集(240个样本)和测试集(74个样本)。分析马铃薯不同生长期冠层反射光谱发现,随生长期的推进冠层光谱存在差异性:即在400~500和740~880 nm范围内,光谱反射率呈降低趋势;在530~640和910~960 nm范围内,反射率呈升高趋势;在530~640 nm范围内,M2和M3生长期的平均光谱非常接近,M4生长期的平均光谱与其他三个生长期的差别较大。叶绿素平均含量随生长期的进程,从M1(28.12 mg·L-1)到M2(31.04 mg·L-1)增加,在M2生长期达到最大值,之后M3(22.00 mg·L-1)和M4(15.36 mg·L-1)依次减少。光谱响应参数随着生长期的进程,绿峰位置Lg和红谷位置Lr逐渐红移,红边位置Lre逐渐蓝移;蓝边面积Abe逐渐增大,红边面积Are逐渐减小;红边面积与蓝边面积比值依次呈现减小趋势。根据VACVR算法筛选10个敏感光谱响应参数,建立SVM判别模型,训练集判别率为100%,测试集判别率为94.59%,该模型可在判别马铃薯的生长期的基础上为田间管理决策提供支持。  相似文献   

16.
为探究土壤表层湿度影响下冬小麦冠层光谱反射率响应晚霜冻害的特征,并检验敏感光谱波段预测小麦产量变化的能力,于2013和2014年小麦拔节期,分别设置了表层土壤含水量为10%(干)、10%~20%(中)和20%(湿)的三个湿度处理的冻前试验,并在低温室内进行降温处理。分析了不同土壤表层湿度下受冻冬小麦的穗数、穗粒数、千粒重、单株产量、冠层光谱反射率及其一阶微分值的差异,对冬小麦冻害产量变化率和高光谱特征参量进行了相关分析和一元线性拟合。结果表明:冬小麦穗粒数和单株产量总体上均随土壤表层湿度的降低而呈减少态势,在土壤表层干处理条件下冻害对冬小麦产量造成的影响最为显著(p0.05);在绿峰(523nm附近)、黄边(571nm附近)、红边(732nm附近)和近红外台的两个水分吸收带(952和1 145nm附近),干+冻害处理冬小麦冠层反射率的一阶微分值与中+冻害、湿+冻害处理的差值明显;剥离了土壤表层湿度对光谱的影响后,冬小麦冠层反射率一阶微分差值在以570nm为中心的黄边区域和以710nm为中心的红边区域对干、中和湿梯度处理下晚霜冻害响应的差异明显;两年试验中的黄边面积(SDy)和570nm处一阶微分值(d570)均与冻害产量变化率达到显著正相关(p0.05),说明黄边区域的高光谱特征参量可用于检测土壤表层湿度影响下的冬小麦晚霜冻害程度。本研究可为土壤表层湿度和晚霜冻害叠加影响下冬小麦产量变化预测方法的探讨提供参考。  相似文献   

17.
为了探索不同滞尘量对植被冠层光谱的影响,以位于上海市中心城区的上海师范大学徐汇区校园为研究样区,选取并使用ASD FieldSpec 3地物光谱仪测定校园内龙爪槐、紫荆、红叶石楠及蔓长春等植物不同滞尘量等级下的冠层反射光谱,然后在实验室中使用万分之一电子分析天平测定相应植物的滞尘量并计算各植物的滞尘能力。在此基础上,分析不同滞尘量对植物冠层光谱特征变化的影响。结果表明: (1)植物在710~1 350 nm之间光谱反射率会随着滞尘量的增减而减小而且三条曲线之间的差值较大;滞尘量的变化对各植物在350~710和1 450~1 750 nm之间的光谱影响较复杂,三条曲线之间的差值虽小但差值比并不小。(2)滞尘对植物冠层光谱的影响不仅与滞尘量有关还与树种有关,不同植物或同种植物不同波长的光谱曲线对滞尘量的灵敏度不同。(3)各植物在“绿峰”和红边附近的光谱曲线的斜率会随着滞尘量的增加而减小。(4)滞尘不会引起红边位移现象,但会消弱红边一阶导数的“双峰”现象,表现为“主峰”值与“次峰”值之间的差随着滞尘量的增加而减小,红边位于719 nm处。找到滞尘或不同滞尘量对植被冠层光谱的影响关系,对高光谱遥感在这一领域的应用具有重大意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号