首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了探究选区激光熔化(SLM)成形ZL114A合金的可行性,研究SLM成形工艺参数对ZL114A铝合金的熔池形貌、表面品质和润湿角的影响。结果表明,扫描速率一定时,熔池熔宽随激光功率增大而增大;线能量密度相等,熔宽也相等。扫描速度为2 500 mm/s,375~475 W下熔道轨迹的连续性和延展性最好,球化等缺陷也较少。确定激光功率为450 W,扫描速度为2 500 mm/s,扫描间距为0.09 mm,层厚为50μm时,润湿角小,熔池高度较小,润湿性好,成形件致密度达到99.94%。  相似文献   

2.
以Ti-6Al-4V(TC4)粉末为材料,采用正交试验方法,主要研究激光功率、扫描速度和扫描间距等工艺参数对TC4合金粉末的SLM成形件的质量、微观组织及力学性能的影响,并引入能量密度来确定TC4粉末的SLM最优工艺成形域。结果表明,随着能量密度增加,TC4合金粉末的SLM成形性能先变好后变差,而其最优的工艺成形域是激光功率为400W,激光扫描速度为800~2 200mm/s,扫描间距为0.08mm,铺粉厚度为0.05mm。  相似文献   

3.
利用选区激光熔化(SLM)技术制备了ZL205A合金,研究了激光能量密度对SLM成形试样显微组织和力学性能的影响。结果表明,ZL205A合金粉末SLM成形试样中微观组织分为3个区域:细晶区、热影响区(HAZ)和粗晶区。在一定的范围内,随着能量密度增大,ZL205A合金粉末SLM成形试样的抗拉强度和屈服强度都先增加后减小。当能量密度为104.20J/mm3时,SLM成形ZL205A合金试样的抗拉强度、屈服强度达到最大,分别为289、230MPa,此时伸长率为4.2%。  相似文献   

4.
研究了分层厚度对选区激光熔化(SLM)技术成形Ti-5Al-2.5Sn(TA7)钛合金试样致密度、显微组织和力学性能的影响规律。结果表明:在激光功率和扫描间距一定的条件下,当分层厚度≤40 mm时,致密度随激光体能量密度的下降不断提高;当分层厚度40 mm时,致密度则随激光体能量密度的下降先升高后降低。随分层厚度的增大和扫描速率的降低,SLM成形过程中的冷却速率逐步下降,当冷却速率低于6.8×10~7K/s时,显微组织由针状马氏体α′逐渐向岛状α_m转变。通过优化工艺参数,在所有分层厚度(20~60 mm)下均能成形致密的TA7试样,其显微硬度、屈服强度和断裂强度超越铸件和锻件;且当分层厚度≤40 mm时,韧塑性超越铸件,达到锻件水平。成功探索出能够兼顾TA7样品成形效率、冶金质量及力学性能的优选分层厚度及SLM工艺参数组合。  相似文献   

5.
采用正交试验研究了激光功率(325W、300W、275 W)、扫描速度(1200 mm/s、1000 mm/s、800 mm/s)、扫描间距(0.14、0.13、0.12 mm)及铺粉层厚(0.04、0.03、0.02 mm)对激光选区熔化成形Ti-6Al-4V钛合金致密度及显微硬度的影响。结果表明:影响致密度的因素主次顺序为激光功率、扫描间距、铺粉层厚、扫描速度;而影响显微维氏硬度的因素主次顺序为铺粉层厚、扫描速度、激光功率、扫描间距。此外,在铺粉层厚为0.03 mm条件下成形的Ti-6Al-4V试块致密度整体较高。考虑工艺参数对Ti-6Al-4V合金致密度及显微维氏硬度的影响,获得最佳工艺参数组合激光功率、扫描速度、扫描间距、铺粉层厚分别为325 W、1000 mm/s、0.12 mm、0.02 mm。  相似文献   

6.
选用GH4169镍基合金粉末,通过调整选区激光熔化中的扫描间距B、激光电流I、扫描速度V、铺粉厚度d等主要工艺参数,制得不同的SLM成型件。同时对不同参数下的成型件进行金相二值化形貌观察并绘制相应的致密度曲线,分析了SLM工艺参数对GH4169成型件致密度的影响规律。优化工艺参数组合为激光电流140A,扫描速度150 mm/min,扫描间距0.35 mm,铺粉厚度0.15 mm,脉冲宽度5.5 ms,激光频率12 Hz,此时致密度达98.45%。  相似文献   

7.
利用选区熔化成型技术(SLM)制备了316L不锈钢试样。通过正交实验法研究了工艺参数对试样致密度的影响,利用扫描电镜(SEM)观察了试样组织缺陷,最后用金相显微镜观察试样表面的组织结构,同时验证试样的致密度。结果表明,工艺参数对试样致密度的影响顺序从大到小依次为:扫描间距、激光功率、扫描速度。体能量密度在小于52.33 J/mm~3时,致密度随着体能量密度增大而增大;体能量密度在大于52.33 J/mm~3时,致密度变化不明显,维持在94.09%~95.91%。由扫描间距过低造成的体能量密度过低会使试样表面出现行列式分布的孔洞,在一定范围内调高激光功率和调低扫描速度能有效减缓孔洞数量。试样组织相为单项奥氏体,试样致密度越大,孔洞越少。  相似文献   

8.
采用激光烧结成形技术研究了不同工艺参数对Fe-16%Ni金属粉末选区激光烧结成型件微观结构和致密性的影响。结果表明,随着脉冲宽度、扫描速度和铺粉厚度的增加,烧结后试样的密度先增加然后减少,随着扫描间距的增加,烧结后试样的密度减小。当脉冲宽度0.7 ms,扫描速度1000 mm/min,铺粉厚度0.15 mm,扫描间距0.15 mm时,烧结成型件成型质量较好。  相似文献   

9.
为了探究不同体能量密度对SLM成形316L不锈钢耐腐蚀性的影响,采用正交试验法制备不同激光功率、扫描间距和扫描速度下的SLM 316L不锈钢成形件,利用扫描电镜和电化学试验对其微观组织和自腐蚀电位进行观察和测量。结果表明,体能量密度过大或过小时,成形件表面的气孔和孔洞等缺陷较多,自腐蚀电位减小,耐腐蚀性变差。体能量密度为44.64 J/mm-3时,SLM 316L不锈钢成形件的自腐蚀电位最高,组织表面的气孔等缺陷相对较少,耐腐蚀性最好。激光功率、扫描间距和扫描速度对SLM 316L不锈钢成形件的耐腐蚀性影响的次序为:激光功率>扫描间距和扫描速度,最佳的工艺参数组合为激光功率250 W,扫描间距0.14 mm,扫描速度800 mm/s。  相似文献   

10.
目的提高选区激光熔化(SLM)成形316L不锈钢的耐磨性和硬度。方法在能量密度为50~110 J/mm~3、扫描间距为0.04~0.12 mm范围内,改变能量密度和扫描间距两种工艺参数,采用选择性激光熔化技术(SLM)制备了12种316L不锈钢试样。通过表面粗糙度测量、孔隙率测量、销盘摩擦试验和布氏硬度试验,研究了工艺参数对SLM成形316L不锈钢试样的摩擦磨损特性和硬度的影响。结果能量密度为90 J/mm~3且扫描间距为0.12 mm时,表面粗糙度Ra最小,为5700 nm。孔隙率范围为12.35%~0.94%,扫描间距为0.12 mm的试样的孔隙率比扫描间距为0.04 mm和0.08 mm的孔隙率小。扫描间距不变时,孔隙率随能量密度增大而减小。能量密度为50 J/mm~3时,扫描间距为0.12 mm的试样的摩擦系数和磨损率比扫描间距为0.04 mm和0.08 mm的要小;能量密度不变时,扫描间距为0.12 mm的试样硬度比扫描间距为0.04mm和0.08 mm的试样高。结论改变扫描间距和能量密度会直接影响成形试样的表面粗糙度、孔隙率。研究范围内,表面粗糙度和孔隙率随扫描间距增大而减小。孔隙率与磨损量及硬度存在相关性:孔隙率越小,硬度越大,磨损率越小。因此,合理选择工艺参数可以降低孔隙率,进而提高表面质量,降低磨损率,增大硬度。  相似文献   

11.
研究了激光功率、扫描速度和扫描间距对激光选区熔化成形AlSi10Mg合金试块致密度的影响,并采用固溶时效工艺对拉伸试样进行热处理,分析了热处理对力学性能的影响规律。结果表明,激光功率对SLM成形AlSi10Mg合金的致密度影响较大;试件的横向抗拉强度略低于纵向,但屈服强度略高,且横向伸长率显著高于纵向。热处理后的SLM成形AlSi10Mg合金构件横向与纵向力学性能相当,均优于AlSi10Mg合金典型拉伸性能。  相似文献   

12.
采用金属选区激光熔化(SLM)成形技术打印制备了316不锈钢,通过扫描电子显微镜(SEM)对比研究了不同SLM工艺参数下的组织缺陷,并测试了其致密度。结果表明,SLM技术打印的316不锈钢组织缺陷主要表现为孔洞和裂纹。工艺参数对其组织缺陷和致密度存在着显著的影响:随着扫描功率的逐渐增大,孔洞缺陷明显减少,裂纹数量也极少,试样的致密度逐渐提高;然而,随着扫描速度和扫描间距的逐渐增大,孔洞及裂纹缺陷均增多,试样的致密度逐渐降低。316不锈钢较优的SLM工艺参数为S=0.05 mm,P=450 w和v=1 500~2 000 mm/s,该条件下组织中只存在极少量的裂纹,试样的致密度高达95.62%。  相似文献   

13.
采用选区激光熔化技术(selective laser melting,SLM)制备了GH3230镍基高温合金,研究了工艺参数对GH3230镍基高温合金成形缺陷的影响。结果表明,在扫描速度为900 mm/s、激光功率210 W、扫描间距0.09 mm、铺粉层厚度0.04 mm的工艺条件下,成形试样的孔隙率达到最小值(0.010 8%)。随后对最佳参数试样进行了固溶处理,研究固溶处理对试样微观组织和力学性能的影响。结果表明,进行固溶处理后的试样表面会析出大量连成线状的碳化物颗粒,随着保温时间的延长,碳化物颗粒尺寸及数量呈现先增长后降低的趋势,合金内部发生再结晶现象,与此同时,试样屈服强度由421.8 MPa降低至347.8 MPa,抗拉强度由763.4 MPa降低至678.9 MPa,而延伸率由17.19%增长至21.2%,合金强度降低而塑性升高。固溶处理不能消除打印缺陷。  相似文献   

14.
采用选区激光熔化(SLM)技术制备了AlCoCrFeNi高熵合金,研究了激光工艺参数对成形性、致密度、微观组织以及力学性能的影响。结果表明,随体能量密度的增加,致密度逐渐增加,最佳的SLM参数为激光功率50 W,扫描速度300 mm/s,扫描间距70 μm,层厚30 μm。铸态和SLM态合金是由无序BCC相(A2)和有序BCC相(B2)组成的双相体心立方结构,由于细晶强化作用,选区激光熔化试样具有比铸态试样更高的显微硬度,但是压缩屈服强度降低,原因是选区激光熔化合金中存在裂纹、孔洞等缺陷。  相似文献   

15.
实验选用GH4169镍基合金粉末,通过调节激光电流、扫描速度、脉冲宽度、激光频率、铺粉厚度、扫描间距和扫描路径等工艺参数,采用单层单道扫描、单层多道扫描和多层多道扫描方式进行选区激光熔化试验,分析工艺参数对粉末成型性的影响规律。并对不同工艺参数所制备的试样进行剖面形貌观察和致密度分析,最终得到的最优工艺参数是扫描速度150mm/min,脉冲宽度5.0ms,铺粉厚度0.15mm,扫描电流140A,激光频率12Hz,扫描间距0.25mm。  相似文献   

16.
多组分铜基金属粉末选择性激光烧结成形的工艺研究   总被引:1,自引:0,他引:1  
沈以赴  顾冬冬  王蕾  薛松柏 《铸造》2005,54(7):659-664
对多组分铜基金属粉末(组分包括纯Cu,预合金CuSn和CuP)进行了选择性激光烧结试验,其成形机制为粉末部分熔化状态下的液相烧结机制.研究了激光功率、光斑直径、扫描速率、扫描间距、铺粉厚度等工艺参数对粉末激光烧结致密化的影响.为便于整体调控激光烧结过程,本文将各工艺参数综合为"能量体密度"这一个参数,结果表明,增加激光功率或减小扫描速率能增加液相生成量,且利于液相的铺展和流动,进而提高润湿性和烧结性;扫描速率越高,则越易引起"球化"现象.减小铺粉厚度有利于获得较好的层间结合,并提高烧结致密度;若铺粉厚度过小,会降低铺粉均匀性,进而有损层间结合性.减小扫描间距使烧结线从断续分布转变为较为平整的结合状态,进而提高烧结致密度.当能量体密度增至一临界值(约0.15 kJ/mm3)时,烧结致密度有显著提高;但若增至过高(大于0.30 kJ/mm3),烧结致密度则呈下降趋势.  相似文献   

17.
通过优化实验方法,采用在钛片上进行钛合金粉末Ti6Al4V(TC4)的选择性激光熔化(SLM)单道扫描成形正交实验,在钛基板上进行单层SLM的正交实验。将打磨过的单道钛板在金相显微镜下进行观察,运用环境扫描电镜(ESEM)对SLM的单层进行分析。结果表明,在相对较高的激光功率以及低的扫描速度下,熔道的润湿角较小,宽度较大,且具有很好的连续性,单层轨迹具有很好的搭接性,整个熔化层较为平整,球化现象较少。最终确定最优参数为扫描速度20 mm/s,扫描间距0.07 mm,铺粉厚度0.07 mm,激光功率95 W,扫描方式为跳转变向,制备出的成形面质量较好。  相似文献   

18.
通过对影响选区激光熔化(SLM)成形件致密度的主要因子—激光功率和扫描速度进行参数设计,引入三种能量密度模型,分析能量密度对SLM成形AlSi10Mg合金致密度的影响.结果表明:能量密度过高或过低均不能得到最佳致密度,合适的激光能量输入才能提高零件的致密度;当光斑直径为30 μm,能量密度相同时,激光功率150 W成形...  相似文献   

19.
以选区激光烧结(SLM)成形ZL114A合金为研究对象,进行了SLM成形ZL114A合金的退火和深冷处理工艺试验,主要研究了退火温度和深冷保温时间对SLM成形ZL114A合金微观组织和力学性能的影响。结果表明,230℃×2h退火处理后,SLM成形ZL114A合金的伸长率提高了18.0%,抗拉强度下降了2.9%;300℃×2h退火处理导致合金的抗拉强度和伸长率下降了28.2%和22.3%;合金退火态的微观组织表现为α-Al与Si相交界处存在大量的孔洞。而深冷处理(-196℃)对SLM成形ZL114A合金的力学性能有明显改善,其中深冷保温36h对力学性能提升效果最佳,相较沉积态,其抗拉强度提高了18.9%,伸长率提高了23.0%;其深冷态的共晶Si在基体中分散更均匀,并转为棒状结构,使合金的塑性得到明显提高。  相似文献   

20.
开展了基于激光选区熔化技术对镍基高温合金GH4169成形工艺的研究。研究了激光扫描速度和激光功率对成形试样组织的影响,及激光加工工艺参数对试样显微组织、致密化行为的影响。结果表明:当激光扫描速度一定,激光功率较低时,熔池的球化效应明显,材料内部形成较多孔洞,致密度较低;随着激光功率的提高,熔池内金属溶液表面张力减小,球化效应明显减弱,致密度随之提高。当激光功率一定,扫描速度较低时,金属溶液补缩能力强,材料组织致密,仅存在少量气孔;随着扫描速度的提高,熔池变窄变浅,相邻熔道及层间材料缺陷明显增多。当激光束能量密度较高时,粉末吸收能量较多,熔池温度高,凝固速率低,易形成粗大的柱状晶。在优化工艺参数下(激光功率335 W、激光扫描速率680 mm/s),成形体的致密度最高(98.7%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号