首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
李志能  张力  董桂兰  胡杨山 《广东化工》2012,39(6):19-20,29
以季戊四醇为核,2,2-二羟甲基丙酸为增长单体,对苯甲磺酸为催化剂,合成了超支化聚酯,通过FI-IR图谱对超支化聚酯进行结构表征,证明得到端基为羟基的超支化聚酯。采用超支化聚酯做增韧剂,研究其对环氧/四氢苯酐固化体系的增韧作用,探讨了超支化聚酯的分子量(代数)、超支化聚酯的含量、固化温度等因素对环氧树脂固化体系力学韧性的影响。  相似文献   

2.
本文以季戊四醇为心核结构、2,2-二羟甲基丁酸为重复单元、对苯甲磺酸为催化剂,合成了端羟基超支化聚酯;然后,采用环氧氯丙烷对超支化聚酯的端羟基进行环氧官能化,合成端环氧基超支化聚酯,采用GPC、13CNMR及1H-NMR图谱对结构进行表征。采用端环氧基超支化聚酯做增韧剂,研究其对双酚A环氧树脂力学性能的影响,探讨了端环氧基超支化聚酯对环氧树脂固化体系力学性能及韧性的影响。  相似文献   

3.
以2,2二羟甲基丙酸(DMPA)和三羟甲基丙烷(TMP)为原料,以对甲苯磺酸(P-TSA)为催化剂,通过“一步法”合成三代超支化聚酯(HBPE),然后采用环氧氯丙烷对HBPE进行改性,得到了具有端环氧基的三代超支化聚酯(EHBP-G3)目标产物,最后采用熔融共混法制备了EHBP改性的聚(3-羟基丁酸酯-co-3羟基戊酸酯)(PHBV)树脂;通过差示扫描量热仪、偏光显微镜、力学性能和熔体流动速率等分析方法对制备的PHBV/EHBP共混物进行表征。结果表明,加入1.5 %(质量分数,下同)三代超支化聚酯(EHBP-G3)时,PHBV/EHBP共混物的结晶度下降了16.1 %,冲击强度提高了34.3 %。  相似文献   

4.
超支化聚酯增韧环氧体系固化动力学   总被引:5,自引:3,他引:2  
用示差扫描量热仪(DSC)对端羟基超支化聚酯增韧环氧树脂体系的固化反应动力学过程进行分析.动态DSC研究表明,在超支化聚酯增韧环氧体系中,H30的使用导致固化反应峰值减小,反应热降低;随着H30的使用量的增大,羟基对环氧/胺反应的催化效果越明显.利用Malek模型计算0 phr和15 phr两个配比的整个固化过程的反应活化能.比较发现,使用H30的体系固化反应表现活化能在整个固化过程中变化较小,比较平缓,放热比较均匀,有利于降低体系的热应力.等温DSC研究表明,未添加H30和添加H30的体系的固化反应均符合自催化模型,添加15 phr H30的体系初期有较好的反应活性,反应级数由2.06增大到2.42,固化反应速率常数提高.  相似文献   

5.
利用丁二酸酐对端羟基超支化聚酯(AHBP)的端基进行改性,得到新的端羧基超支化聚酯(CHBP),并将其用于环氧树脂体系的增韧。研究了CHBP用量、羧基含量对环氧树脂/甲基四氢苯酐(EP/MeTHPA)固化体系的力学性能和热性能的影响。结果表明,改性后分子末端全部带羧基的CHBP的增韧作用最好,冲击强度可达18.5kJ/m2。CHBP质量分数为15%时,固化物的冲击强度可达18.2 kJ/m2,拉伸强度64.86 MPa,玻璃化温度(Tg)从100℃提高到106℃左右,可满足增韧环氧树脂的同时不降低其耐热性的要求。  相似文献   

6.
以长链烷基酸为改性剂,对以三羟甲基丙烷为核、二羟甲基丙酸为支化单体合成的端羟基超支化聚酯进行端基稳定化改性。采用羟值滴定和核磁共振氢谱(1H-NMR)表征超支化聚酯的改性程度;采用热重-微商热重分析(TG-DTG)研究了代数、端基类型以及改性程度对超支化聚酯热稳定性和热分解行为的影响。结果表明,将不稳定的端羟基转变为热稳定的端烷基后,超支化聚酯的热稳定性明显提高,且改性程度越高,或长烷烃链越短,聚合物的热稳定性越好。超支化聚酯的热分解主要包括两个失重阶段,分别对应于由大量端基所组成的"壳"的破坏以及由大量C-C单键所组成的骨架(即"核")解体。极性端羟基的含量越小或非极性端烷基的含量越大,第一失重峰越不明显。  相似文献   

7.
综述了超支化聚酯(HBPE)在环氧树脂改性中的研究进展,首先对端羟基/端羧基/端环氧/端氨基HBPE的制备方法进行了总结;随后对不同端基的HBPE在环氧树脂的增韧改性及其增韧机理的研究进展进行了介绍;然后介绍了不同端基的HBPE对环氧树脂固化性能的影响研究.最后分析了HBPE在环氧树脂改性领域中需要关注的问题,指出未来...  相似文献   

8.
李三梅  赵磊 《广东化工》2012,39(11):31-33
以丙烯酸甲酯和二乙醇胺为原料,制得N,N-二羟乙基-3-胺基丙酸甲酯(DAMP);接着,用DAMP与三羟乙基异氰脲酸酯(THEIC)经酯交换反应,合成出一种超支化聚酯多元醇;再以该多元醇与丙烯酸通过酯化反应,制备了可UV固化的超支化聚酯丙烯酸酯。实验结果表明:以对甲苯磺酸为催化剂,当THEIC与DAMP的物质的量比为1∶9时,可制得二代超支化聚酯多元醇;该聚酯丙烯酸酯的玻璃化温度为53.0℃,与环氧丙烯酸酯(9104)混合组成的组合物,具有固化速度快、固化膜柔韧性佳的特点;附着力可达0级,摆杆硬度为0.751。  相似文献   

9.
超支化聚酯型环氧树脂的合成及表征   总被引:10,自引:0,他引:10  
用多元酸酐与环氧氯丙烷开环聚合制备了端羟基超支化聚酯,在碱作用下对羟基封端的超支化聚酯进行了闭环反应合成了超支化聚酯型环氧树增,研究了碱及碱的用量对闭环反应的影响,通过DSC考察了超支化聚酯型环氧树脂/邻苯二甲酸酐固化体系的固化行为,计算出固化过程的2个固化反应活化能Ea分别为64 35kJ/mol和91 12kJ/mol,频率因子lnA分别为21 8和26 8。  相似文献   

10.
棕榈酸对脂肪族超支化聚酯的端基改性研究   总被引:1,自引:0,他引:1  
采用准一步法,以三羟甲基丙烷为核,2,2-二羟甲基丙酸为AB2型单体合成超支化聚酯。为了拓宽其使用范围,用棕榈酸(十六碳酸)对超支化聚酯进行端基改性,成功地找出了提纯的方法,并进行了表征。测试结果表明,聚酯的端羟基大约有97%被酯化,说明方法可行。与用棕榈酰氯进行改性相比,大大节约了成本。  相似文献   

11.
超支化聚酯增韧改性环氧树脂   总被引:16,自引:2,他引:16  
采用端羧基的超支化聚酯(HBP-SA)和甲基四氢苯酐(MeTHPA)作为混合固化剂固化普通环氧树脂。考察了HBP-SA加入量对环氧固化物性能的影响,发现HBP-SA的加入降低了树脂固化的体积收缩率,提高了环氧固化物的拉伸强度和冲击强度。加入10%的HBP-SA,拉伸强度从22 5MPa提高到64 66MPa,而冲击强度从4 99kJ/m2提高到30 63kJ/m2,分别提高150%和500%,增韧增强效果也明显,但固化物的弯曲强度和耐热性能有所下降。  相似文献   

12.
以长链烷基酸为改性剂,对以三羟甲基丙烷为核、二羟甲基丙酸为支化单体合成的第三代端羟基超支化聚酯进行端基改性,采用羟值滴定和核磁共振氢谱(1H-NMR)表征超支化聚酯的改性程度,采用差示扫描量热分析(DSC)和广角X射线衍射(WAXD)研究了端烷烃链长度和端基改性程度对超支化聚酯相转变行为和结晶行为的影响。结果表明,超支化聚酯的结晶归因于长链端烷烃的有序排列,端烷烃链越长,端烷基超支化聚酯的冷结晶温度、热结晶温度和熔融温度均逐渐升高;端烷烃链越长或改性程度越高,衍射峰强度越大,晶粒尺寸变小。进一步用DSC研究了端十八烷基超支化聚酯的非等温结晶行为并用Ozawa法对其非等温结晶动力学进行了分析,发现其成核方式为异相成核,生长方式为针状晶体的一维生长。  相似文献   

13.
以间苯二甲酸和三羟甲基丙烷为原料,通过A2+B3体系的溶液聚合工艺制备了具有芳香-脂肪结构的端羟基超支化聚酯。利用傅里叶变换红外光谱仪、核磁共振、凝胶渗透色谱和热分析系统对超支化聚酯进行了结构表征和性能分析。研究结果表明,不同加料顺序制备的超支化聚酯在特性黏度、支化度、分子质量及其分布和热性能等方面存在比较明显的差别。  相似文献   

14.
以1,6-二溴己烷为A2单体、3,5-二羟基苯甲酸为CB2单体,通过亲核取代聚合反应合成末端为酚羟基的超支化聚酯醚(HBPEE-OH),再加入等当量的环氧溴丙烷得到末端为环氧基团的超支化聚酯醚(HBPEE-epoxy)。将HBPEE-epoxy添加到环氧/酸酐体系中,采用示差扫描量热仪研究了其对环氧树脂固化过程的影响,发现HBPEE-epoxy的添加会促进体系固化,使起始固化温度前移。对固化物的力学性能及热性能的研究发现当HBPEE-epoxy添加质量分数为4.0%时,固化物的冲击强度、弯曲强度、热分解温度、玻璃化转变温度分别提高了70.66%,19.77%,7.8℃和1.4℃。  相似文献   

15.
针对多晶硅换热器运行过程结垢问题,以三羟甲基丙烷(TMP)为核、2,2-二羟甲基丙酸(DMPA)为AB_2型聚合单体,合成端羟基超支化聚酯(HBP-OH),再以马来酸酐(MAH)进行端羟基改性,得到一种端羧基超支化聚酯(HBP-OMA)阻垢剂,考察了反应时间、反应温度、n(HBP-OH)∶n(MAH)对HBP-OMA阻垢性能的影响。确定HBP-OMA最佳合成工艺条件为:反应时间4.0 h、反应温度100℃、n(HBP-OH)∶n(MAH)=1∶1.5。当HBP-OMA阻垢剂添加量为7 mg·L~(-1)时,对碳酸钙的阻垢率达到96%左右,具有良好的阻垢性能。  相似文献   

16.
超支化聚酯的合成及光固化性能研究   总被引:4,自引:1,他引:4  
通过甲基四氢苯酐和环氧丙醇的开环聚合反应,一步法制备超支化聚酯,聚酯的数均摩尔质量为1450~2600g/mol,支化度在0.41~0.71之间。用甲基丙烯酸缩水甘油酯改性,合成了UV固化超支化聚酯,并对其光固化性能进行了初步研究,发现超支化聚酯能有效降低固化膜的线收缩率,聚酯的官能度越高,固化膜的硬度越大,固化速度越快,在约1s的固化时问内凝胶率超过75%。  相似文献   

17.
以三羟基丙烷和二羟甲基丙酸为原料,缩聚反应制备了超支化聚酯(HBPE),并制备了酚醛树脂/HBPE(PF/HBPE)共混体系。采用红外光谱、差示扫描量热分析等方法表征了HBPE的分子结构和PF/HBPE共混体系的性能,并用非模型等转化率法Flynn Wall Ozawa (FWO)描述了PF/HBPE共混体系的活化能与转化率之间的关系。结果表明,由于PF的酚羟基和HBPE的羟基产生了氢键作用,PF/HBPE共混体系显示出单一的玻璃化转变温度,HBPE的加入,提高了PF固化物的冲击强度和弯曲强度,当HBPE的含量为15 %时,冲击强度和弯曲强度分别为4.5 kJ/m2 和77.84 MPa。  相似文献   

18.
为了进一步提高不饱和聚酯涂料的固化能力和涂膜的综合性能,用三羟甲基丙烷二烯丙基醚与异佛尔酮二异氰酸酯加成物对端羟基超支化聚酯进行改性制得超支化的不饱和树脂,再用所得的超支化不饱和树脂对线性不饱和聚酯进行改性,用傅里叶变换红外(FT-IR)、核磁共振(1H-NMR)、凝胶渗透色谱(GPC)、扫描电子显微镜(SEM)、热重分析(TG)等对产物进行表征与分析,结果表明,当超支化不饱和树脂添加量为30%时,所得涂料具有最优异的综合性能,表干时间39 min,铅笔硬度2H,柔韧性3 mm,耐冲击性45 cm,拉伸强度10.15 MPa,断裂伸长率13.06%,耐热性最好。  相似文献   

19.
《粘接》2016,(2)
采用端羟基超支化聚酯、环氧树脂、甲基四氢苯酐和活性硅微粉为主要材料制备了高性能环氧浇注树脂。研究了超支化聚酯对体系黏度、沉降性、耐温指数、机械性能和电性能的影响及其规律。结果表明,超支化聚酯可有效分散硅微粉,提高混合体系的均匀度,提高浇筑树脂的耐热性、机械强度和电性能。  相似文献   

20.
分别以乙基丁基丙二醇(BEPD)、1,4-丁二醇(BDO)和新戊二醇(NPG)为核单体,二羟甲基丙酸为AB2型单体,对甲苯磺酸为催化剂,采用准一步法合成了第三代超支化聚酯(HBP-1、HBP-2和HBP-3)。采用FT-IR、1H-NMR和GPC对其结构和分子量进行表征并测定了超支化聚酯的特性黏度。以甲苯二异氰酸酯加成物为固化剂,研究了超支化聚酯的固化涂膜性能,使用热重分析仪(TGA)考察了超支化聚酯涂膜的热稳定性能。结果表明,三种核单体成功合成了超支化聚酯,以BEPD为核单体的超支化聚酯HBP-1具有最高的支化度达到0.55。GPC测得的分子量与理论分子量接近,且以BEPD为核的HBP-1分子量分布最低为1.68。超支化聚酯在极性溶剂中有较好的溶解性能,在非极性溶剂中不溶,其中HBP-1具有更好的溶解性能和较低的特性黏度(4.24 mL g 1)。超支化聚酯的固化涂膜具有较好的热稳定性、优异的附着力、柔韧性和较高的硬度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号