首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Waste management has at least five types of impacts on climate change, attributable to: (1) landfill methane emissions; (2) reduction in industrial energy use and emissions due to recycling and waste reduction; (3) energy recovery from waste; (4) carbon sequestration in forests due to decreased demand for virgin paper; and (5) energy used in long-distance transport of waste: A recent USEPA study provides estimates of overall per-tonne greenhouse gas reductions due to recycling. Plausible calculations using these estimates suggest that countries such as the US or Australia could realise substantial greenhouse gas reductions through increased recycling, particularly of paper.  相似文献   

2.

Waste management has at least five types of impacts on climate change, attributable to: (1) landfill methane emissions; (2) reduction in industrial energy use and emissions due to recycling and waste reduction; (3) energy recovery from waste; (4) carbon sequestration in forests due to decreased demand for virgin paper; and (5) energy used in long-distance transport of waste: A recent USEPA study provides estimates of overall per-tonne greenhouse gas reductions due to recycling. Plausible calculations using these estimates suggest that countries such as the US or Australia could realise substantial greenhouse gas reductions through increased recycling, particularly of paper.  相似文献   

3.
Future changes in water supply are likely to vary across catchments due to a river basin's sensitivity to climate and land use changes. In the Santiam River Basin (SRB), Oregon, we examined the role elevation, intensity of water demands, and apparent intensity of groundwater interactions, as characteristics that influence sensitivity to climate and land use changes, on the future availability of water resources. In the context of water scarcity, we compared the relative impacts of changes in water supply resulting from climate and land use changes to the impacts of spatially distributed but steady water demand. Results highlight how seasonal runoff responses to climate and land use changes vary across subbasins with differences in hydrogeology, land use, and elevation. Across the entire SRB, water demand exerts the strongest influence on basin sensitivity to water scarcity, regardless of hydrogeology, with the highest demand located in the lower reaches dominated by agricultural and urban land uses. Results also indicate that our catchment with mixed rain‐snow hydrology and with mixed surface‐groundwater may be more sensitive to climate and land use changes, relative to the catchment with snowmelt‐dominated runoff and substantial groundwater interactions. Results highlight the importance of evaluating basin sensitivity to change in planning for planning water resources storage and allocation across basins in variable hydrogeologic settings.  相似文献   

4.
5.
气候变化风险能够在部门内与部门间进行传递和放大,形成多个复杂嵌套的风险互联网络,导致了系统性风险的产生。对气候变化风险互联网络的刻画能够帮助理解风险产生与演化的过程,削减气候变化对社会经济系统的直接物理风险,及碳达峰与碳中和建设过程中可能伴随的转型风险。本文识别了四类典型的气候变化风险互联网络,涵盖食品—能源—水系统、公共健康、宏观经济和金融市场、社会安全等四类部门或领域。针对每一类网络,分别总结了主要的气候变化风险传递路径及当前的研究进展和局限,并概述了开展系统性风险管理的建议。  相似文献   

6.
大规模的农业扩张和全球气候变化导致东北地区发生剧烈的土地利用/土地覆盖变化。本研究分析了研究区1976—2008年的土地利用变化和生长季各月气温的变化趋势,并结合农业扩张程度,探究LUCC对农业扩张和气候变化的响应,为指导农业发展规划和保障国家粮食安全提供理论依据。结果表明,1976—2008年农田面积逐步增加,生长季气温一直呈上升趋势。1976—2001年生长季气温的上升趋势不稳定,气温变化程度较大;2001—2008年,农业扩张放缓,生长季气温上升趋势显著,且上升趋势一直增加,气温变化比上一时期更稳定;且这两个时期农业扩张和气候变化对土地利用强度的影响在南北和东西方向上均存在明显差异。  相似文献   

7.
Currently, mitigation and adaptation measures are handled separately, due to differences in priorities for the measures and segregated planning and implementation policies at international and national levels. There is a growing argument that synergistic approaches to adaptation and mitigation could bring substantial benefits at multiple scales in the land use sector. Nonetheless, efforts to implement synergies between adaptation and mitigation measures are rare due to the weak conceptual framing of the approach and constraining policy issues. In this paper, we explore the attributes of synergy and the necessary enabling conditions and discuss, as an example, experience with the Ngitili system in Tanzania that serves both adaptation and mitigation functions. An in-depth look into the current practices suggests that more emphasis is laid on complementarity—i.e., mitigation projects providing adaptation co-benefits and vice versa rather than on synergy. Unlike complementarity, synergy should emphasize functionally sustainable landscape systems in which adaptation and mitigation are optimized as part of multiple functions. We argue that the current practice of seeking co-benefits (complementarity) is a necessary but insufficient step toward addressing synergy. Moving forward from complementarity will require a paradigm shift from current compartmentalization between mitigation and adaptation to systems thinking at landscape scale. However, enabling policy, institutional, and investment conditions need to be developed at global, national, and local levels to achieve synergistic goals.  相似文献   

8.
9.
10.
Conservation organizations rely on conservation easements for diverse purposes, including protection of species and natural communities, working forests, and open space. This research investigated how perpetual conservation easements incorporated property rights, responsibilities, and options for change over time in land management. We compared 34 conservation easements held by one federal, three state, and four nonprofit organizations in Wisconsin. They incorporated six mechanisms for ongoing land management decision-making: management plans (74 %), modifications to permitted landowner uses with discretionary consent (65 %), amendment clauses (53 %), easement holder rights to conduct land management (50 %), reference to laws or policies as compliance terms (47 %), and conditional use permits (12 %). Easements with purposes to protect species and natural communities had more ecological monitoring rights, organizational control over land management, and mechanisms for change than easements with general open space purposes. Forestry purposes were associated with mechanisms for change but not necessarily with ecological monitoring rights or organizational control over land management. The Natural Resources Conservation Service-Wetland Reserve Program had a particularly consistent approach with high control over land use and some discretion to modify uses through permits. Conservation staff perceived a need to respond to changing social and ecological conditions but were divided on whether climate change was likely to negatively impact their conservation easements. Many conservation easements involved significant constraints on easement holders’ options for altering land management to achieve conservation purposes over time. This study suggests the need for greater attention to easement drafting, monitoring, and ongoing decision processes to ensure the public benefits of land conservation in changing landscapes.  相似文献   

11.
12.
Stakhiv, Eugene Z., 2011. Pragmatic Approaches for Water Management Under Climate Change Uncertainty. Journal of the American Water Resources Association (JAWRA) 47(6):1183–1196. DOI: 10.1111/j.1752‐1688.2011.00589.x Abstract: Water resources management is in a difficult transition phase, trying to accommodate large uncertainties associated with climate change while struggling to implement a difficult set of principles and institutional changes associated with integrated water resources management. Water management is the principal medium through which projected impacts of global warming will be felt and ameliorated. Many standard hydrological practices, based on assumptions of a stationary climate, can be extended to accommodate numerous aspects of climate uncertainty. Classical engineering risk and reliability strategies developed by the water management profession to cope with contemporary climate uncertainties can also be effectively employed during this transition period, while a new family of hydrological tools and better climate change models are developed. An expansion of the concept of “robust decision making,” coupled with existing analytical tools and techniques, is the basis for a new approach advocated for planning and designing water resources infrastructure under climate uncertainty. Ultimately, it is not the tools and methods that need to be revamped as much as the suite of decision rules and evaluation principles used for project justification. They need to be aligned to be more compatible with the implications of a highly uncertain future climate trajectory, so that the hydrologic effects of that uncertainty are correctly reflected in the design of water infrastructure.  相似文献   

13.
Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.  相似文献   

14.
15.
Woznicki, Sean A. and A. Pouyan Nejadhashemi, 2011. Sensitivity Analysis of Best Management Practices Under Climate Change Scenarios. Journal of the American Water Resources Association (JAWRA) 48(1): 90‐112. DOI: 10.1111/j.1752‐1688.2011.00598.x Abstract: Understanding the sensitivity of best management practices (BMPs) implementation as climate changes will be important for water resources management. The objective of this study was to determine how the sensitivity of BMPs performance vary due to changes in precipitation, temperature, and CO2 using the Soil and Water Assessment Tool. Sediment, total nitrogen, and total phosphorus loads on an annual and monthly basis were estimated before and after implementation of eight agricultural BMPs for different climate scenarios. Downscaled climate change data were obtained from the National Center for Atmospheric Research Community Climate System Model for the Tuttle Creek Lake watershed in Kansas and Nebraska. Using a relative sensitivity index, native grass, grazing management, and filter strips were determined to be the most sensitive for all climate change scenarios, whereas porous gully plugs, no‐tillage, and conservation tillage were the least sensitive on an annual basis. The monthly sensitivity analysis revealed that BMP sensitivity varies largely on a seasonal basis for all climate change scenarios. The results of this research suggest that the majority of agricultural BMPs tested in this study are significantly sensitive to climate change. Therefore, caution should be exercised in the decision‐making processes.  相似文献   

16.
Adaptive management (AM) is a rigorous approach to implementing, monitoring, and evaluating actions, so as to learn and adjust those actions. Existing AM projects are at risk from climate change, and current AM guidance does not provide adequate methods to deal with this risk. Climate change adaptation (CCA) is an approach to plan and implement actions to reduce risks from climate variability and climate change, and to exploit beneficial opportunities. AM projects could be made more resilient to extreme climate events by applying the principles and procedures of CCA. To test this idea, we analyze the effects of extreme climatic events on five existing AM projects focused on ecosystem restoration and species recovery, in the Russian, Trinity, Okanagan, Platte, and Missouri River Basins. We examine these five case studies together to generate insights on how integrating CCA principles and practices into their design and implementation could improve their sustainability, despite significant technical and institutional challenges, particularly at larger scales. Although climate change brings substantial risks to AM projects, it may also provide opportunities, including creating new habitats, increasing the ability to quickly test flow‐habitat hypotheses, stimulating improvements in watershed management and water conservation, expanding the use of real‐time tools for flow management, and catalyzing creative application of CCA principles and procedures.  相似文献   

17.
This study analyzed changes in hydrology between two recent decades (1980s and 2010s) with the Soil and Water Assessment Tool (SWAT) in three representative watersheds in South Dakota: Bad River, Skunk Creek, and Upper Big Sioux River watersheds. Two SWAT models were created over two discrete time periods (1981‐1990 and 2005‐2014) for each watershed. National Land Cover Datasets 1992 and 2011 were, respectively, ingested into 1981‐1990 and 2005‐2014 models, along with corresponding weather data, to enable comparison of annual and seasonal runoff, soil water content, evapotranspiration (ET), water yield, and percolation between these two decades. Simulation results based on the calibrated models showed that surface runoff, soil water content, water yield, and percolation increased in all three watersheds. Elevated ET was also apparent, except in Skunk Creek watershed. Differences in annual water balance components appeared to follow changes in land use more closely than variation in precipitation amounts, although seasonal variation in precipitation was reflected in seasonal surface runoff. Subbasin‐scale spatial analyses revealed noticeable increases in water balance components mostly in downstream parts of Bad River and Skunk Creek watersheds, and the western part of Upper Big Sioux River watershed. Results presented in this study provide some insight into recent changes in hydrological processes in South Dakota watersheds. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

18.
Abstract

While US climate change mitigation policy has stalled at the national level, local and regional actors are increasingly taking progressive steps to reduce their greenhouse gas emissions. Universities are poised to play a key role in this grassroots effort by targeting their own emissions and by working with other local actors to develop climate change mitigation programmes. Researchers at the Pennsylvania State University have collaborated with university administrators and personnel to inventory campus emissions and develop mitigation strategies. In addition, they have facilitated a stakeholder-driven climate change mitigation project in one Pennsylvania county and started an ongoing service-learning project aimed at reducing emissions in another county. These campus and community outreach initiatives demonstrate that university-based mitigation action may simultaneously achieve tangible local benefits and develop solutions to broader challenges facing local climate change mitigation efforts. Outcomes include improved tools and protocols for measuring and reducing local emissions, lessons learned about service-learning approaches to climate change mitigation, and methods for creating climate change governance networks involving universities, local governments and community stakeholders.  相似文献   

19.
While US climate change mitigation policy has stalled at the national level, local and regional actors are increasingly taking progressive steps to reduce their greenhouse gas emissions. Universities are poised to play a key role in this grassroots effort by targeting their own emissions and by working with other local actors to develop climate change mitigation programmes. Researchers at the Pennsylvania State University have collaborated with university administrators and personnel to inventory campus emissions and develop mitigation strategies. In addition, they have facilitated a stakeholder-driven climate change mitigation project in one Pennsylvania county and started an ongoing service-learning project aimed at reducing emissions in another county. These campus and community outreach initiatives demonstrate that university-based mitigation action may simultaneously achieve tangible local benefits and develop solutions to broader challenges facing local climate change mitigation efforts. Outcomes include improved tools and protocols for measuring and reducing local emissions, lessons learned about service-learning approaches to climate change mitigation, and methods for creating climate change governance networks involving universities, local governments and community stakeholders.  相似文献   

20.
Mitigation of climate change is often described as a tragedy of the commons. According to this theoretical framework, it is collectively rational for present-generation countries to mitigate climate change, but not individually rational to do so. It is rather in national self-interest to ‘free-ride’ on the mitigation actions of other countries. In this paper, I discuss two arguments criticizing this view. According to these arguments, it is in most cases individually rational for present-generation countries to mitigate, i.e., it is in their national self-interest. The first argument focuses on national self-interest in terms of economic efficiency, the second on national self-interest in terms of national security. I conclude that the critical arguments to a large extent are tenable, but that they seem to underestimate the significance of those cases in which it is not in national self-interest to mitigate climate change. In these cases the tragedy of the commons framework is still applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号