首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Performance of seven fully coupled models in simulating Indian summer monsoon climatology as well as the inter-annual variability was assessed using multi member 1 month lead hindcasts made by several European climate groups as part of the program called Development of a European multi-model ensemble system for seasonal-to-inter-annual prediction (DEMETER). Dependency of the model simulated Indian summer monsoon rainfall and global sea surface temperatures on model formulation and initial conditions have been studied in detail using the nine ensemble member simulations of the seven different coupled ocean–atmosphere models participated in the DEMETER program. It was found that the skills of the monsoon predictions in these hindcasts are generally positive though they are very modest. Model simulations of India summer monsoon rainfall for the earlier period (1959–1979) are closer to the ‘perfect model’ (attainable) score but, large differences are observed between ‘actual’ skill and ‘perfect model’ skill in the recent period (1980–2001). Spread among the ensemble members are found to be large in simulations of India summer monsoon rainfall (ISMR) and Indian ocean dipole mode (IODM), indicating strong dependency of model simulated Indian summer monsoon on initial conditions. Multi-model ensemble performs better than the individual models in simulating ENSO indices, but does not perform better than the individual models in simulating ISMR and IODM. Decreased skill of multi-model ensemble over the region indicates amplification of errors due to existence of similar errors in the individual models. It appears that large biases in predicted SSTs over Indian Ocean region and the not so perfect ENSO-monsoon (IODM-monsoon) tele-connections are some of the possible reasons for such lower than expected skills in the recent period. The low skill of multi-model ensemble, large spread among the ensemble members of individual models and the not so perfect monsoon tele-connection with global SSTs points towards the importance of improving individual models for better simulation of the Indian monsoon.  相似文献   

2.
R. Krishnan  M. Sugi 《Climate Dynamics》2003,21(3-4):233-242
Recent studies have furnished evidence for interdecadal variability in the tropical Pacific Ocean. The importance of this phenomenon in causing persistent anomalies over different regions of the globe has drawn considerable attention in view of its relevance in climate assessment. Here, we examine multi-source climate records in order to identify possible signatures of this longer time scale variability on the Indian summer monsoon. The findings indicate a coherent inverse relationship between the inter-decadal fluctuations of Pacific Ocean sea surface temperature (SST) and the Indian monsoon rainfall during the last century. A warm (cold) phase of the Pacific interdecadal variability is characterized by a decrease (increase) in the monsoon rainfall and a corresponding increase (decrease) in the surface air temperature over the Indian subcontinent. This interdecadal relationship can also be confirmed from the teleconnection patterns evident from long-period sea level pressure (SLP) dataset. The SLP anomalies over South and Southeast Asia and the equatorial west Pacific are dynamically consistent in showing an out-of-phase pattern with the SLP anomalies over the tropical central-eastern Pacific. The remote influence of the Pacific interdecadal variability on the monsoon is shown to be associated with prominent signals in the tropical and southern Indian Ocean indicative of coherent inter-basin variability on decadal time scales. If indeed, the atmosphere–ocean coupling associated with the Pacific interdecadal variability is independent from that of the interannual El Niño-Southern Oscillation (ENSO), then the climate response should depend on the evolutionary characteristics of both the time scales. It is seen from our analysis that the Indian monsoon is more vulnerable to drought situations, when El Niño events occur during warm phases of the Pacific interdecadal variability. Conversely, wet monsoons are more likely to prevail, when La Niña events coincide during cold phases of the Pacific interdecadal variability.  相似文献   

3.
For central India and its west coast, rainfall in the early (15 May–20 June) and late (15 September–20 October) monsoon season correlates with Pacific Ocean sea-surface temperature (SST) anomalies in the preceding month (April and August, respectively) sufficiently well, that those SST anomalies can be used to predict such rainfall. The patterns of SST anomalies that correlate best include the equatorial region near the dateline, and for the early monsoon season (especially since ~1980), a band of opposite correlation stretching from near the equator at 120°E to ~25°N at the dateline. Such correlations for both early and late monsoon rainfall and for both regions approach, if not exceed, 0.5. Although correlations between All India Summer Monsoon Rainfall and typical indices for the El Ni?o-Southern Oscillation (ENSO) commonly are stronger for the period before than since 1980, these correlations with early and late monsoon seasons suggest that ENSO continues to affect the monsoon in these seasons. We exploit these patterns to assess predictability, and we find that SSTs averages in specified regions of the Pacific Ocean in April (August) offer predictors that can forecast rainfall amounts in the early (late) monsoon season period with a ~25% improvement in skill relative to climatology. The same predictors offer somewhat less skill (~20% better than climatology) for predicting the number of days in these periods with rainfall greater than 2.5?mm. These results demonstrate that although the correlation of ENSO indices with All India Rainfall has decreased during the past few decades, the connections with ENSO in the early and late parts have not declined; that for the early monsoon season, in fact, has grown stronger in recent decades.  相似文献   

4.
Summary Based on the study of 45 years (1948–1992) data, the average lowest MSL pressure of heat low over central Pakistan and adjoining northwest India of the month of May is found to have potential as a parameter for predicting all India Summer monsoon seasonal rainfall. This new parameter is seen to have stable and significant correlation with monsoon rainfall. Its correlation coefficients for different periods are found significant at 0.1% to 1% level of significance. The stability of the correlation coefficients was tested using 10, 20 and 30 year sliding windows. This test revealed that it is the most dependable parameter in comparison with 7 of the well known parameters analysed in this study. Regression models have been developed considering this new parameter along with other circulation parameters. The regression models developed are seen to perform very well for the independent data. The Root Mean Square Error (RMSE) values of some of these models, for independent data, are smaller than those of similar regression models reported in literature.With 8 Figures  相似文献   

5.
Simulation of Indian summer monsoon circulation and rainfall using RegCM3   总被引:5,自引:2,他引:5  
Summary The Regional Climate Model RegCM3 has been used to examine its suitability in simulating the Indian summer monsoon circulation features and associated rainfall. The model is integrated at 55 km horizontal resolution over a South Asia domain for the period April–September of the years 1993 to 1996. The characteristics of wind at 850 hPa and 200 hPa, temperature at 500 hPa, surface pressure and rainfall simulated by the model over the Indian region are examined for two convective schemes (a Kuo-type and a mass flux scheme). The monsoon circulation features simulated by RegCM3 are compared with those of the NCEP/NCAR reanalysis and the simulated rainfall is validated against observations from the Global Precipitation Climatology Centre (GPCC) and the India Meteorological Department (IMD). Validation of the wind and temperature fields shows that the use of the Grell convection scheme yields results close to the NCEP/NCAR reanalysis. Similarly, the Indian Summer Monsoon Rainfall (ISMR) simulated by the model with the Grell convection scheme is close to the corresponding observed values. In order to test the model response to land surface changes such as the Tibetan snow depth, a sensitivity study has also been conducted. For such sensitivity experiment, NIMBUS-7 SMMR snow depth data in spring are used as initial conditions in the RegCM3. Preliminary results indicate that RegCM3 is very much sensitive to Tibetan snow. The model simulated Indian summer monsoon circulation becomes weaker and the associated rainfall is reduced by about 30% with the introduction of 10 cm of snow over the Tibetan region in the month of April.  相似文献   

6.
Summary The present study examines the long term trend in sea surface temperatures (SSTs) of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean in the context of global warming for the period 1901–2002 and for a subset period 1971–2002. An attempt has also been made to identify the relationship between SST variations over three different ocean areas, and All-India and homogeneous region summer monsoon rainfall variability, including the role of El-Ni?o/Southern Oscillation (ENSO). Annual sea surface temperatures of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean show a significant warming trend of 0.7 °C, 0.6 °C and 0.5 °C per hundred years, respectively, and a relatively accelerated warming of 0.16 °C, 0.14 °C and 0.14 °C per decade during the 1971–2002 period. There is a positive and statistically significant relationship between SSTs over the Arabian Sea from the preceding November to the current February, and Indian monsoon rainfall during the period 1901–2002. The correlation coefficient increases from October and peaks in December, decreasing from February to September. This significant relationship is also found in the recent period 1971–2002, whereas, during 1901–70, the relationship is not significant. On the seasonal scale, Arabian Sea winter SSTs are positively and significantly correlated with Indian monsoon rainfall, while spring SSTs have no significant positive relationship. Nino3 spring SSTs have a negative significant relationship with Indian monsoon rainfall and it is postulated that there is a combined effect of Nino3 and Arabian Sea SSTs on Indian monsoon. If the Nino3 SST effect is removed, the spring SSTs over the Arabian Sea also have a significant relationship with monsoon rainfall. Similarly, the Bay of Bengal and Equatorial South Indian Ocean spring SSTs are significantly and positively correlated with Indian monsoon rainfall after removing the Nino3 effect, and correlation values are more pronounced than for the Arabian Sea. Authors’ address: Dr. D. R. Kothawale, A. A. Munot, H. P. Borgaonkar, Climatology and Hydrometeorology divisions, Indian Institute of Tropical Meteorology, Pune 411008, India.  相似文献   

7.
Summary In this paper, we have tried to understand the ENSO, MJO and Indian summer monsoon rainfall relationships from observation as well as from coupled model results. It was the general feeling that El-Niño years are the deficient in Indian monsoon rainfall and converse being the case for the La-Niña years. Recent papers by several authors noted the failure of this relationship. We find that the model output does confirm a breakdown of this relationship. In this study we have seen that a statistically defined modified Indian summer monsoon rainfall (MISMR) index, a linearly regressed ISMR index and dynamical Webster index (WBSI), shows an inverse relationship with ENSO index during the entire period of integration (1987 to 1999). It is also seen from this study that the amplification of the MJO signals were large and the ENSO signals were less pronounced during the years of above normal ISMR. The MJO signal amplitudes were small and ENSO signals were strong during the years of deficient ISMR. It has been noted that here is a time lag between the MJO and ENSO signal in terms of their modulation aspect. If time lag is added with the ENSO signal then both signals maintain the amplitude modulation theory. A hypothesis is being proposed here to define a relationship between MJO and ENSO signals for the entire period between 1987 and 1999.Received September 18, 2002; revised November 22, 2002; accepted December 20, 2002 Published online: May 8, 2003  相似文献   

8.
Impact of Northwest Pacific anticyclone on the Indian summer monsoon region   总被引:1,自引:1,他引:0  
Influence of northwest (NW) Pacific anticyclone on the Indian summer monsoon (ISM), particularly over the head Bay of Bengal and monsoon trough region, is investigated. Strong NW Pacific anticyclone during summer induces negative precipitation anomalies over the head Bay of Bengal and Gangetic Plain region. Westward extension of moisture divergence and dry moisture transport from NW Pacific associated with anticyclone (ridge) and local Hadley cell-induced subsidence are responsible for these negative precipitation anomalies. The impact is maximum when the anticyclone and Indian Ocean basin warming co-occur. This contributes significantly to year-to-year variability of ISM.  相似文献   

9.
Theoretical and Applied Climatology - In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical...  相似文献   

10.
Summary The interannual variability of the monthly mean upper layer thickness for the central Arabian Sea (5°N-15° N and 60° E-70° E) from a numerical model of the Indian Ocean during the period 1954–1976 is investigated in relation to Indian monsoon rainfall variability. The variability in the surface structure of the Somali Current in the western Arabian Sea is also briefly discussed. It is found that these fields show a great deal of interannual variability that is correlated with variability in Indian monsoon rainfall. Model upper layer thickness (H) is taken as a surrogate variable for thermocline depth, which is assumed to be correlated with sea surface temperature. In general, during the period 1967 to 1974, which is a period of lower than normal monsoon rainfall, the upper ocean warm water sphere is thicker (deeper thermocline which implies warmer surface water); in contrast, during the period 1954–1966, which is a period of higher than normal monsoon rainfall, the upper warm water sphere is thinner (shallower thermocline which implies cooler surface water). The filtered time series of uppper layer thickness indieates the presence of a quasi-biennial oscillation (QBO) during the wet monsoon period, but this QBO signal is conspicuously absent during the dry monsoon period.Since model H primarily responds to wind stress curl, the interannual variability of the stress curl is investigated by means of an empirical orthogonal function (EOF) analysis. The first three EOF modes represent more than 72% of the curl variance. The spatial patterns for these modes exhibit many elements of central Arabian Sea climatology. Features observed include the annual variation in the intensity of the summer monsoon ridge in the Arabian Sea and the annual zonal oscillation of the ridge during pre- and post-monsoon seasons. The time coefficients for the first EOF amplitude indicate the presence of a QBO during the wet monsoon period only, as seen in the ocean upper layer thickness.The variability in the model upper layer thickness is a passive response to variability in the wind field, or more specifically to variability in the Findlater Jet. When the winds are stronger, they drive stronger currents in the ocean and have stronger curl fields associated with them, driving stronger Ekman pumping. They transport more moisture from the southern hemisphere toward the Indian subcontinent, and they also drive a greater evaporative heat flux beneath the Findlater Jet in the Arabian Sea. It has been suggested that variability in the heat content of the Arabian Sea drives variability in Indian monsoon rainfall. The results of this study suggest that the opposite is true, that the northern Arabian Sea responds passively to variability in the monsoon system.With 10 Figures  相似文献   

11.
Theoretical and Applied Climatology - The Indian subcontinent, due to its enormous variety of geographical features, is associated with inhomogeneity. Hence, in the present study, we have...  相似文献   

12.
13.
14.
15.
16.
Summary Based on observed rainfall data of India Meteorological Department (IMD), correlation coefficients (CCs) have been computed between Indian summer monsoon rainfall (ISMR) and sea surface temperature (SST) anomalies over different Nino regions and standardised pressure difference between Tahiti and Darwin. Significant positive CCs are found between the Southern Oscillation Index (SOI) in winter and subsequent June rainfall over India. Concurrent with and subsequent to Indian summer monsoon, SOI shows significant positive CC with the mean rainfall of July to September (JAS). Significant negative CCs are found between JAS mean rain and the concurrent and following SST anomalies over Nino-3.4 region. On the basis of these correlations, it is proposed that the entire period of summer monsoon from June to September could be divided into two sub-periods such as: early summer (June) and mid-late summer (July to September) monsoon for prediction of ISMR in the extended range.In order to examine the characteristics of atmospheric circulation during some El-Nino years, divergent flow at 200hPa and omega field at 500hPa based on NCEP/NCAR reanalysis have been studied in detail. Major significant southward shift of upper level divergent field from India are related to El-Nino and this shift may be responsible for causing droughts during several El-Nino years over India. Also vertical wind fields at 500hPa show sinking motion over large parts of India and west Pacific and ascending motion over southern Indian Ocean, central and eastern Pacific during major drought years.  相似文献   

17.
This study has identified probable factors that govern ISMR predictability. Furthermore, extensive analysis has been performed to evaluate factors leading to the predictability aspect of Indian Summer Monsoon Rainfall (ISMR) using uncoupled and coupled version of National Centers for Environmental Prediction Coupled Forecast System (CFS). It has been found that the coupled version (CFS) has outperformed the uncoupled version [Global Forecast System (GFS)] of the model in terms of prediction of rainfall over Indian land points. Even the spatial distribution of rainfall is much better represented in the CFS as compared to that of GFS. Even though these model skills are inadequate for the reliable forecasting of monsoon, it imparts the capacious knowledge about the model fidelity. The mean monsoon features and its evolution in terms of rainfall and large-scale circulation along with the zonal and meridional shear of winds, which govern the strength of the monsoon, are relatively closer to the observation in the CFS as compared to the GFS. Furthermore, sea surface temperature–rainfall relation is fairly realistic and intense in the coupled version of the model (CFS). It is found that the CFS is able to capture El Niño Southern Oscillation ISMR (ENSO-ISMR) teleconnections much strongly as compared to GFS; however, in the case of Indian Ocean Dipole ISMR teleconnections, GFS has the larger say. Coupled models have to be fine-tuned for the prediction of the transition of El Niño as well as the strength of the mature phase has to be improved. Thus, to sum up, CFS tends to have better predictive skill on account of following three factors: (a) better ability to replicate mean features, (b) comparatively better representation of air–sea interactions, and (c) much better portrayal of ENSO-ISMR teleconnections. This study clearly brings out that coupled model is the only way forward for improving the ISMR prediction skill. However, coupled model’s spurious representation of SST variability and mean model bias are detrimental in seasonal prediction.  相似文献   

18.
Though over a century long period (1871–2010) the Indian summer monsoon rainfall (ISMR) series is stable, it does depict the decreasing tendency during the last three decades of the 20th century. Around mid-1970s, there was a major climate shift over the globe. The average all-India surface air temperature also shows consistent rise after 1975. This unequivocal warming may have some impact on the weakening of ISMR. The reduction in seasonal rainfall is mainly contributed by the deficit rainfall over core monsoon zone which happens to be the major contributor to seasonal rainfall amount. During the period 1976–2004, the deficit (excess) monsoons have become more (less) frequent. The monsoon circulation is observed to be weakened. The mid-tropospheric gradient responsible for the maintenance of monsoon circulation has been observed to be weakened significantly as compared to 1901–1975. The warming over western equatorial Indian Ocean as well as equatorial Pacific is more pronounced after mid-70s and the co-occurrence of positive Indian Ocean Dipole Mode events and El Nino events might have reinforced the large deficit anomalies of Indian summer monsoon rainfall during 1976–2004. All these factors may contribute to the weakening of ISMR.  相似文献   

19.
Summary In this paper, the interannual variability of satellite derived outgoing longwave radiation (OLR) is examined in relation to the Indian summer monsoon rainfall (June to September total rainfall; ISMR). Monthly grid point OLR field over the domain i.e. the tropical Pacific and Atlantic region (30°N to 30°S, 110°E to 10°W) and the ISMR for the period 1974–2001 are used for the study. A strong and significant north–south dipole structure in the correlation pattern is found between the ISMR and the OLR field over the domain during January. This dipole is located over the west Pacific region with highly significant negative (positive) correlations over the South China Sea and surrounding region (around north-east Australia). The dipole weakens and moves northwestward during February and disappears in March. During the month of May, the OLR over the central Atlantic Ocean shows a significant positive relationship with the ISMR. These relationships are found to be consistent and robust during the period of analysis and can be used in the prediction of the ISMR.A multiple regression equation is developed, using the above results, for prediction of the ISMR and the empirical relationships are verified using an independent data set. The results are encouraging for the prediction of the ISMR. The composite annual cycle of the OLR, over the west Pacific regions during extreme ISMR is found to be useful in the prediction of extreme summer monsoon rainfall conditions over the Indian subcontinent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号