首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluxes of dissolved organic matter (DOM) are an important vector for the movement of carbon (C) and nutrients both within and between ecosystems. However, although DOM fluxes from throughfall and through litterfall can be large, little is known about the fate of DOM leached from plant canopies, or from the litter layer into the soil horizon. In this study, our objectives were to determine the importance of plant-litter leachate as a vehicle for DOM movement, and to track DOM decomposition [including dissolve organic carbon (DOC) and dissolved organic nitrogen (DON) fractions], as well as DOM chemical and isotopic dynamics, during a long-term laboratory incubation experiment using fresh leaves and litter from several ecosystem types. The water-extractable fraction of organic C was high for all five plant species, as was the biodegradable fraction; in most cases, more than 70% of the initial DOM was decomposed in the first 10 days of the experiment. The chemical composition of the DOM changed as decomposition proceeded, with humic (hydrophobic) fractions becoming relatively more abundant than nonhumic (hydrophilic) fractions over time. However, in spite of proportional changes in humic and nonhumic fractions over time, our data suggest that both fractions are readily decomposed in the absence of physicochemical reactions with soil surfaces. Our data also showed no changes in the 13C signature of DOM during decomposition, suggesting that isotopic fractionation during DOM uptake is not a significant process. These results suggest that soil microorganisms preferentially decompose more labile organic molecules in the DOM pool, which also tend to be isotopically heavier than more recalcitrant DOM fractions. We believe that the interaction between DOM decomposition dynamics and soil sorption processes contribute to the 13C enrichment of soil organic matter commonly observed with depth in soil profiles. published online 2004  相似文献   

2.
Dissolved organic matter (DOM) contains molecules that absorb light at various wavelengths. This chromophoric DOM (CDOM) influences the transmission of both visible and ultraviolet energy through water. The absorption of light by CDOM often causes structural changes that reduce its capacity to further absorb light, a process termed ‘photobleaching‘. A model was designed to assess photobleaching through the entire water column of lake ecosystems. The model uses lake morphometry and dissolved organic carbon (DOC) concentration in conjunction with a defined solar spectrum and experimentally measured photobleaching rates to compute the total water columm photobleaching. The model was initially applied to a theoretical ‘average‘ lake using solar spectra for both the north (N) and south (S) temperate western hemispheres and variable DOC from 0.3 to 30 mg L−1. The consequences of varying waveband-specific photobleaching coefficients and lake morphometry were explored in a second set of simulations. Finally, the model was also applied to four temperate northern lakes for which we had prior measurements of CDOM photobleaching rates. The model demonstrates that all three wavebands of solar radiation (UVB, UVA, and PAR) contribute significantly to total water column photobleaching, with UVA being most important. The relative contributions of the three wavebands were invariant for DOC more than 3 mg L−1. Total water column photobleaching at 440 nm was three to five times faster under the UV-enriched solar spectrum of the southern hemisphere. Increasing the lake’s mean depth (from 0.37 to 9.39 m) resulted in five- or 15-fold slower rates of total water column photobleaching for DOC concentrations of 1 or 10 mg L−1, respectively. Varying the waveband-specific photobleaching coefficients by 10-fold resulted in a similar change in total water column photobleaching rates. Applying the model to four specific lakes revealed that photobleaching for the entire water column would reduce CDOM light absorption by 50% in 18–44 days under summer conditions. Received 17 November 1998; accepted 27 June 2000.  相似文献   

3.
陆地生态系统中水溶性有机质的环境效应   总被引:43,自引:3,他引:40  
黄泽春  陈同斌  雷梅 《生态学报》2002,22(2):259-269
目前水溶性有机质(Dissolved Organic Matter)已逐步成为陆地生态系统中的一个研究热点。系统地评述了陆地生态系统中DOM的组成特点及其环境效应。尽管关于陆地生态系统中DOM的研究还不完善,至今对其性质,组成和分类方法等问题看法不一,但现有结果已经表明DOM是一种十分活跃的重要化学组分,它对陆地生态系统中污染物质的溶解,吸附,解吸,吸收,迁移和生物毒性,微生物活动以及土壤形成过程等均有显著的影响。影响DOM在地生态系统中的环境效应的主要因素包括:DOM与污染物的络合作用,污染物溶解/沉淀作用,土壤对DOM的吸附作用,土壤质地,酸碱缓冲作用等。  相似文献   

4.
Leaf Litter as a Source of Dissolved Organic Carbon in Streams   总被引:4,自引:1,他引:4  
Dissolved organic carbon (DOC) is an abundant form of organic matter in stream ecosystems. Most research has focused on the watershed as the source of DOC in streams, but DOC also comes from leaching of organic matter stored in the stream channel. We used a whole-ecosystem experimental approach to assess the significance of leaching of organic matter in the channel as a source of DOC in a headwater stream. Inputs of leaf litter were excluded from a forested Appalachian headwater stream for 3 years. Stream-water concentration, export, and instream generation of DOC were reduced in the litter-excluded stream as compared with a nearby untreated reference stream. The proportion of high molecular weight (HMW) DOC (more than 10,000 daltons) in stream water was not altered by litter exclusion. Mean DOC concentration in stream water was directly related to benthic leaf-litter standing stock. Instream generation of DOC from leaf litter stored in the stream channel contributes approximately 30% of daily DOC exports in this forested headwater stream. This source of DOC is greatest during autumn and winter and least during spring and summer. It is higher during increasing discharge than during base flow. We conclude that elimination of litter inputs from a forested headwater stream has altered the biogeochemistry of DOC in this ecosystem. Received 2 September 1997; accepted 27 January 1998.  相似文献   

5.
We examined the influence of watershed land use and morphology on dissolved organic carbon (DOC) concentration in 32 south-central Ontario streams having varying agricultural land-use intensities in their catchments. For streams in this region, both univariate and multivariate regression models identify the proportion of the watershed with poorly drained soils (r 2 up to 0.67) as a better predictor of stream DOC concentrations than any other landscape characteristic, including the proportion of the watershed as wetland. Agricultural land use did not strongly influence DOC concentrations in our study area; however, we do show that land-use changes could significantly alter the delivery of DOC to streams in the region. We also identify how landscape–DOC relationships change over a 2-year time period, as related to season, regional climatic conditions, soil moisture, and hydrology. Our results indicate that the relationships between landscape predictors and stream DOC concentrations are temporally dynamic. Strong temporal trends are shown seasonally and in association with climate, through its control of modelled soil moisture conditions. During periods of positive and negative deviation from normal soil moisture conditions, the relationships of DOC concentrations with landscape characteristics become less predictable. We show that these dominant patterns are likely a function of varying flow paths and that anthropogenic changes that affect soil moisture conditions or flow path will in turn strongly influence DOC dynamics. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3). The dominance of NO3 relative to the total amount nitrate of N leaching from the soil shows that NO3 is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited.  相似文献   

7.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

8.
Abstract The stream–riparian interface, characterized by a dynamic and complex hydrology, is an important control point for nutrient fluxes and processing between terrestrial and aquatic systems. Predicted alterations in the discharge regime in Mediterranean climate regions make it necessary to understand the effects of abrupt hydrological transition between dry and wet conditions on the transport and fate of dissolved organic carbon (DOC) across the stream–riparian interface. In this study, the concentrations and fate of total DOC (TDOC) and a subset of four molecular weight fractions (<1 kDa, 1–10 kDa, 10–100 kDa, >100 kDa) were investigated in stream water and riparian groundwater during autumn of 2003 and 2004. The two study periods were characterized by contrasting antecedent hydrological conditions: the streamflow was interrupted in summer 2003 but was permanent in summer 2004. Comparison of the two study periods indicates that an abrupt dry–wet hydrological transition amplifies the water exchange across the stream–riparian interface and favors retention of up to 57% of the TDOC that flows across the interface. Furthermore, the efficiency of DOC retention across the stream-riparian interface also varies greatly depending on DOC molecular size. More than 70% of DOC fractions higher than 10 kDa were retained, whereas the smaller fraction (less than 1 kDa) was nearly conserved. Consequently, our study helps to clarify the effects of extreme hydrological events on DOC transport in running waters in Mediterranean regions.  相似文献   

9.
Dissolved organic matter (DOM) plays an important role in transporting carbon and nitrogen from forest floor to mineral soils in temperate forest ecosystems. Thus, the retention of DOM via sorption or microbial assimilation is one of the critical steps for soil organic matter formation in mineral soils. The chemical properties of DOM are assumed to control these processes, yet we lack fundamental information that links litter quality, DOM chemistry, and DOM retention. Here, we studied whether differences in litter quality affect solution chemistry and whether changes in litter inputs affect DOM quality and removal in the field. The effects of litter quality on solution chemistry were evaluated using chemical fractionation methods for laboratory extracts and for soil water collected from a temperate coniferous forest where litter inputs had been altered. In a laboratory extraction, litter type (needle, wood, root) and the degree of decomposition strongly influenced solution chemistry. Root litter produced more than 10 times more water-extractable dissolved organic N (DON) than any other litter type, suggesting that root litter may be most responsible for DON production in this forest ecosystem. The chemical composition of the O-horizon leachate was similar under all field treatments (doubled needle, doubled wood, and normal litter inputs). O-horizon leachate most resembled laboratory extracts of well-decomposed litter (that is, a high proportion of hydrophobic acids), in spite of the significant amount of litter C added to the forest floor and a tendency toward higher mean DOM under doubled-Litter treatments. A lag in DOM production from added litter or microbial modification might have obscured chemical differences in DOM under the different treatments. Net DOM removal in this forest soil was strong; DOM concentration in the water deep in the mineral soil was always low regardless of concentrations in water that entered the mineral soil and of litter input manipulation. High net removal of DOM from O-horizon leachate, in spite of extremely low initial hydrophilic neutral content (labile DOM), coupled with the lack of influence by season or soil depth, suggests that DOM retention in the soil was mostly by abiotic sorption.  相似文献   

10.
During the unstratified (winter) and stratified (summer) periods of 1999 and 2000, we examined carbon (C) dynamics in the upper water column of southern Lake Michigan. We found that (a) bacterial respiration (BR) and planktonic respiration (PR) were major sinks for C, (b) C flux through bacteria (CFTB) was diminished in winter because of reduced bacterial production (BP) and increased bacterial growth efficiency (BGE) at colder temperatures, and (c) PR exceeded primary production (PP) during the spring–summer transition. Drawdown of dissolved organic C (DOC), resuspended organic matter from the lake floor, and riverine organic matter likely provided organic C to compensate for this temporal deficit. DOC in the water column decreased between winter and summer (29–91 mg C m2 d−1) and accounted for 20%–53% of CFTB and 11%–33% of PR. Sediment resuspension events supported elevated winter heterotrophy in the years that they occurred with greatest intensities (1998 and 2000) and may be important to interannual variability in C dynamics. Further, riverine discharge, containing elevated DOC (5×) and dissolved P (10×) relative to lake water, peaked in the winter–spring season in southern Lake Michigan. Collectively, terrigenous inputs (river, stream, and groundwater discharges; storm water runoff; and atmospheric precipitation) may support approximately 10%–20% of annual in-lake heterotrophy as well as autotrophy. Terrestrial subsidies likely play a key role in the C balance of even very large lakes, representing a critical linkage between terrestrial and aquatic ecosystems. Received 11 June 2001; Accepted 14 December 2001.  相似文献   

11.
Planktonic bacterial production in the tidal freshwater Hudson River is a major component of secondary productivity and is uncoupled from planktonic primary productivity. There are several major sources of allochthonous dissolved organic carbon (DOC) whose potential contribution to heterotrophic bacterial growth was examined with bioassays. Supply of DOC from the upper Hudson drainage basin and a large tributary in the mid-Hudson together comprise 70 kT DOC/year, which is the bulk of the DOC load to the tidal freshwater Hudson River. Two contrasting tidal wetlands contribute DOC to the main-stem river but were only a few percent of the tributary load even during summer low-flow conditions. The quantity of DOC released from fine sediments was intermediate to the other two loadings considered. Bacterial growth in bioassays receiving water from the sources varied, but differences in thymidine incorporation between reference and DOC sources were small, usually less than 2 nmol/L/h. Similarity in thymidine incorporation suggests that all sources of DOC were capable of supporting bacterial growth at approximately equal rates. Seasonal shifts in carbon availability were clear in several cases, for example, greater growth on wetland-derived DOC at times of peak plant productivity. Seasonal differences in tributary DOC bioavailability were not large despite the well-known seasonality of tributary inputs. Activities of a suite of extracellular enzymes were used as a biologically based characterization of DOC from the various sources. Shifts in allocation among enzymes were apparent, indicating that there are biologically relevant differences in composition among the sources. Fluorescence characteristics and absorbance per unit carbon also varied among sources, providing an independent confirmation of compositional differences among sources. The absence of large differences in bacterial productivity among sources suggests that growth is supported by a wide range of DOC, and the relative importance of the sources is probably related to the quantitative differences in inputs. Efforts to classify carbon supplies to ecosystems must recognize that organism plasticity in carbon use and physical mixing processes will both act to homogenize what might initially appear to be quite distinctive carbon inputs. Received 15 April 1997; accepted 17 February 1998  相似文献   

12.
Understanding terrestrial carbon metabolism is critical because terrestrial ecosystems play a major role in the global carbon cycle. Furthermore, humans have severely disrupted the carbon cycle in ways that will alter the climate system and directly affect terrestrial metabolism. Changes in terrestrial metabolism may well be as important an indicator of global change as the changing temperature signal. Improving our understanding of the carbon cycle at various spatial and temporal scales will require the integration of multiple, complementary and independent methods that are used by different research communities. Tools such as air sampling networks, inverse numerical methods, and satellite data (top-down approaches) allow us to study the strength and location of the global- and continental-scale carbon sources and sinks. Bottom-up studies provide estimates of carbon fluxes at finer spatial scales and examine the mechanisms that control fluxes at the ecosystem, landscape, and regional scales. Bottom-up approaches include comparative and process studies (for example, ecosystem manipulative experiments) that provide the necessary mechanistic information to develop and validate terrestrial biospheric models. An iteration and reiteration of top-down and bottom-up approaches will be necessary to help constrain measurements at various scales. We propose a major international effort to coordinate and lead research programs of global scope of the carbon cycle. Received 7 May 1999; accepted 28 September 1999.  相似文献   

13.
Trends in Dissolved Organic Carbon in UK Rivers and Lakes   总被引:11,自引:6,他引:5  
Several studies have highlighted an increase in DOC concentration in streams and lakes of UK upland catchments though the causal mechanisms controlling the increase have yet to be fully explained. This study, compiles a comprehensive data set of DOC concentration records for UK catchments to evaluate trends and test whether observed increases are ubiquitous over time and space. The study analysed monthly DOC time series from 198 sites, including 29 lakes, 8 water supply reservoirs and 161 rivers. The records vary in length from 8 to 42 years going back as far as 1961. Of the 198 sites, 153 (77%) show an upward trend in DOC concentration significant at the 95% level, the remaining 45 (23%) show no significant trend and no sites show a significant decrease in DOC concentration. The average annual increase in DOC concentration was 0.17 mg C/l/year. The dataset shows: (i) a spatial consistent upward trend in the DOC concentration independent of regional effects of rainfall, acid and nitrogen deposition, and local effects of land-use change; (ii) a temporally consistent increase in DOC concentration for period back as far as the 1960s; (iii) the increase in DOC concentration means an estimated DOC flux from the UK as 0.86 Mt C for the year 2002 and is increasing at 0.02 Mt C/year. Possible reasons for the increasing DOC concentration are discussed.  相似文献   

14.
The fate of terrestrially-derived dissolved organic carbon (DOC) is important to carbon (C) cycling in both terrestrial and aquatic environments, and recent evidence suggests that climate warming is influencing DOC dynamics in northern ecosystems. To understand what determines the fate of terrestrial DOC, it is essential to quantify the chemical nature and potential biodegradability of this DOC. We examined DOC chemical characteristics and biodegradability collected from soil pore waters and dominant vegetation species in four boreal black spruce forest sites in Alaska spanning a range of hydrologic regimes and permafrost extents (Well Drained, Moderately Well Drained, Poorly Drained, and Thermokarst Wetlands). DOC chemistry was characterized using fractionation, UV–Vis absorbance, and fluorescence measurements. Potential biodegradability was assessed by incubating the samples and measuring CO2 production over 1 month. Soil pore water DOC from all sites was dominated by hydrophobic acids and was highly aromatic, whereas the chemical composition of vegetation leachate DOC varied significantly with species. There was no seasonal variability in soil pore water DOC chemical characteristics or biodegradability; however, DOC collected from the Poorly Drained site was significantly less biodegradable than DOC from the other three sites (6% loss vs. 13–15% loss). The biodegradability of vegetation-derived DOC ranged from 10 to 90% loss, and was strongly correlated with hydrophilic DOC content. Vegetation such as Sphagnum moss and feathermosses yielded DOC that was quickly metabolized and respired. In contrast, the DOC leached from vegetation such as black spruce was moderately recalcitrant. Changes in DOC chemical characteristics that occurred during microbial metabolism of DOC were quantified using fractionation and fluorescence. The chemical characteristics and biodegradability of DOC in soil pore waters were most similar to the moderately recalcitrant vegetation leachates, and to the microbially altered DOC from all vegetation leachates.  相似文献   

15.
陆地土壤碳循环的研究动态   总被引:56,自引:3,他引:56  
1 引 言陆地碳循环不仅关系到陆地生态系统生产力的形成,同时也影响到整个地球系统的能量平衡,是陆地生态系统结构和功能的综合体现。近几十年来,由于人类活动引起大气CO2浓度的急剧上升,并可能导致全球气候变化,而且这种变化与陆地碳循环之间存在复杂的相互反馈机制,陆地碳循环已成为生态学、气候学、土壤学、生理学及地质学等众多学科研究的共同目标。在国际地圈生物圈研究计划(IGBP)中,碳循环也是全球尺度模型化工作最初集中的主要目标[13]。然而由于陆地生态系统的多样性和复杂性,目前在陆地碳循环研究中仍存…  相似文献   

16.
Vertical and seasonal distributions of dissolved organic carbon (DOC) were investigated in a deep reservoir by considering the biodegradability and optical properties of DOC from three different layers during the stratified season. DOC in the epilimnion was characterized by relatively labile compounds that may have originated from phytoplankton. DOC in the metalimnion was variable in its composi<\h>tion and was possibly affected by turbid water inputs to the reservoir during the summer monsoon season. DOC in the hypolimnion always showed refractory characteristics, with low decomposition rates and high ultraviolet (UV) absorption.  相似文献   

17.
We studied the effect of nutrient inputs on the carbon (C) budget of rocky shore communities using a set of eight large experimental mesocosms. The mesocosms received a range of inorganic nitrogen (N) and phosphorus (P) additions, at an N:P ratio of 16. These additions were designed to elevate the background concentration, relative to that in eutrophic Oslofjord (Norway) waters, by 1, 2, 4, 8, 16, 32 μmol dissolved inorganic nitrogen (DIN)l−1 (and the corresponding P increase). Two unamended mesocosms were used as controls. The nutrients were added continuously for 27 months before gross primary production (GPP), respiration (R), net community production (NCP), and dissolved organic carbon (DOC) production were assessed for the dominant algal species (Fucus serratus) and for the whole experimental ecosystem. Inputs and outputs of DOC and particulate organic carbon (POC) from the mesocosms were also quantified. The F. serratus communities were generally autotrophic (average P/R ratio = 1.33 ± 0.12), with the GPP independent of the nutrient inputs to the mesocosms, and maintained a high net DOC production during both day (0.026 ± 0.008 g C m−2 h−1) and night (0.015 ± 0.004 g C m−2 h−1). All the experimental rocky shore ecosystems were autotrophic (P/R ratio = 2.04 ± 0.28), and neither macroalgal biomass nor production varied significantly with increasing nutrient inputs. Most of the excess production from these autotrophic ecosystems was exported from the systems as DOC, which accounted for 69% and 58% of the NCP of the dominant community and the experimental ecosystem, respectively, the rest being lost as POC. High DOC release and subsequent export from the highly energetic environments occupied by rocky shore communities may prevent the development of eutrophication symptoms and render these communities resistant to eutrophication. Received 10 October 2001; accepted 18 July 2002.  相似文献   

18.
Hypolimnetic oxygen content in lentic ecosystems has traditionally been modeled as a function of variables measured at the epilimnion, or that are supposed to drive epilimnetic processes, like total phosphorus load. However, in man-made reservoirs the river inflow can plunge into deep layers, directly linking the hypolimnion with the surrounding watershed. In these circumstances, organic matter carried by the river can influence the hypolimnetic oxygen content without important intervention of epilimnetic processes. Taking long-term data from two reservoirs in Spain, we applied an empirical regression approach to show that the dissolved organic matter carried by the river is the main driver shaping the hypolimnetic oxygen content. By contrast, typical variables commonly included in the modeling of the oxygen content in the hypolimnion (nutrient concentrations, chlorophyll a, and dissolved organic carbon measured in the water column) did not show any significant correlation. Interpretations from this regression approach were supported by a comparison between the monthly oxygen consumption in the hypolimnion and the monthly dissolved organic carbon load from the river inflow. We also revisited the prediction of the year-to-year variability of the Nürnberg’s anoxic factor in four reservoirs from Spain and the USA, explicitly including the allochthonous sources in the equations. These sources were significant predictors of the anoxic factor, especially in those systems subject to relatively high human impact. Thus, effects of allochthonous dissolved organic carbon should always be considered in empirical modeling and management of reservoir hypolimnetic processes related to oxygen content (for example, anoxia, nutrient internal loading, or phosphorus cycle resilience).  相似文献   

19.
The amount, chemical composition, and source of dissolved organic carbon (DOC), together with in situ ultraviolet (UV-B) attenuation, were measured at 1–2 week intervals throughout the summers of 1999, 2000, and 2001 at four sites in Rocky Mountain National Park (Colorado). Eight additional sites, four in Sequoia and Kings Canyon National Park/John Muir Wilderness (California) and four in Glacier National Park (Montana), were sampled during the summer of 2000. Attenuation of UV-B was significantly related to DOC concentrations over the three years in Rocky Mountain (R2 = 0.39, F = 25.71, P < 0.0001) and across all parks in 2000 (R2 = 0.44, F = 38.25, P < 0.0001). The relatively low R2 values, however, reflect significant temporal and spatial variability in the specific attenuation per unit DOC. Fluorescence analysis of the fulvic acid DOC fraction (roughly 600–2,000 Daltons) indicated that the source of DOC significantly affected the attenuation of UV-B. Sites in Sequoia–Kings Canyon were characterized by DOC derived primarily from algal sources and showed much deeper UV-B penetration, whereas sites in Glacier and Rocky Mountain contained a mix of algal and terrestrial DOC-dominated sites, with more terrestrially dominated sites characterized by greater UV-B attenuation per unit DOC. In general, site characteristics that promoted the accumulation of terrestrially derived DOC showed greater attenuation of UV-B per unit DOC; however, catchment vegetation and soil characteristics, precipitation, and local hydrology interacted to make it difficult to predict potential exposure from DOC concentrations.  相似文献   

20.
Ecosystems - Dissolved organic matter (DOM) dynamics influence aquatic ecosystem metabolism with ecological and biogeochemical effects. During microbial degradation, certain DOM molecules...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号