首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the adsorption of Cu(II) onto goethite (α-FeOOH), hematite (α-Fe2O3) and lepidocrocite (γ-FeOOH) from pH 2-7. EXAFS spectra show that Cu(II) adsorbs as (CuO4Hn)n−6 and binuclear (Cu2O6Hn)n−8 complexes. These form inner-sphere complexes with the iron (hydr)oxide surfaces by corner-sharing with two or three edge-sharing Fe(O,OH)6 polyhedra. Our interpretation of the EXAFS data is supported by ab initio (density functional theory) geometries of analogue Fe2(OH)2(H2O)8Cu(OH)4and Fe3(OH)4(H2O)10Cu2(OH)6 clusters. We find no evidence for surface complexes resulting from either monodentate corner-sharing or bidentate edge-sharing between (CuO4Hn)n−6 and Fe(O,OH)6 polyhedra. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed even though we are supersaturated with respect to CuO and Cu(OH)2. Having identified the bidentate (FeOH)2Cu(OH)20 and tridentate (Fe3O(OH)2)Cu2(OH)30 surface complexes, we are able to fit the experimental copper(II) adsorption data to the reactions
  相似文献   

2.
A new mineral kobyashevite, Cu5(SO4)2(OH)6·4H2O (IMA 2011–066), was found at the Kapital’naya mine, Vishnevye Mountains, South Urals, Russia. It is a supergene mineral that occurs in cavities of a calcite-quartz vein with pyrite and chalcopyrite. Kobyashevite forms elongated crystals up to 0.2 mm typically curved or split and combined into thin crusts up to 1?×?2 mm. Kobyashevite is bluish-green to turquoise-coloured. Lustre is vitreous. Mohs hardness is 2½. Cleavage is {010} distinct. D(calc.) is 3.16 g/cm3. Kobyashevite is optically biaxial (?), α 1.602(4), β 1.666(5), γ 1.679(5), 2 V(meas.) 50(10)°. The chemical composition (wt%, electron-microprobe data) is: CuO 57.72, ZnO 0.09, FeO 0.28, SO3 23.52, H2O(calc.) 18.39, total 100.00. The empirical formula, calculated based on 18 O, is: Cu4.96Fe0.03Zn0.01S2.01O8.04(OH)5.96·4H2O. Kobyashevite is triclinic, $ P\overline{\,1 } $ , a 6.0731(6), b 11.0597(13), c 5.5094(6)?Å, α 102.883(9)°, β 92.348(8)°, γ 92.597(9)°, V 359.87(7)?Å3, Z?=?1. Strong reflections of the X-ray powder pattern [d,Å-I(hkl)] are: 10.84–100(010); 5.399–40(020); 5.178–12(110); 3.590–16(030); 2.691–16(20–1, 040, 002), 2.653–12(04–1, 02–2), 2.583–12(2–11, 201, 2–1–1), 2.425–12(03–2, 211, 131). The crystal structure (single-crystal X-ray data, R?=?0.0399) сontains [Cu4(SO4)2(OH)6] corrugated layers linked via isolated [CuO2(H2O)4] octahedra; the structural formula is CuCu4(SO4)2(OH)6·4H2O. Kobyashevite is a devilline-group member. It is named in memory of the Russian mineralogist Yuriy Stepanovich Kobyashev (1935–2009), a specialist on mineralogy of the Urals.  相似文献   

3.
Summary Recently several natural and artificial ferric iron sulphate crystal structures have been solved. Sideronatrite, Na2Fe3+(SO4)2(OH)·3H2O, does not provide good crystals for structural purposes. However if we examine crystallographic, chemical and physical data some useful information about the ...Fe–O–S... structural topology can be inferred. In fact this analysis strengthens the hypothesis that there is a {Fe 2 3+ (SO4)4(OH)2} chain in sideronatrite like that found in guildite, Cu2+Fe3+(SO4)2(OH)·4H2O.
Sideronatrit: Ein Mineral mit einer {Fe2(SO4)4(OH)2}-Kette vom Typ Guildit?
Zusammenfassung Kürzlich wurden die Kristallstrukturen mehrerer natürlicher und künstlicher Ferrisulfate gelöst. Sideronatrit, Na2Fe3+(SO4)2(OH)·3H2O, liefert keine für die Strukturuntersuchung gut geeigneten Kristalle. Dennoch erhält man aus der Untersuchung der kristallographischen, chemischen und physikalischen Daten nützliche Information über die ...Fe–O–S...-Topologie der Struktur. Eine solche Analyse spricht für die Hypothese, daß der Sideronatrit eine {Fe 2 3+ (SO4)4(OH2)}-Kette enthält, wie sie im Guildit, Cu2+Fe3+(SO4)2(OH)·4H2O, gefunden wurde.


With 1 Figure

Paper presented at the Sixth European Crystallographic Meeting. Barcelona, Spain 1980.  相似文献   

4.
Gypsum (CaSO4·2H2O), alunite (KAl3(SO4)2(OH)6), and rare phosphate–sulphate sanjuanite Al2(PO4)(SO4)(OH) 9(H2O) and rossiantonite (Al3(PO4)(SO4) 2(OH)2(H2O)14) have recently been identified as secondary mineral deposits in different quartz‐sandstone caves in the Gran Sabana region, Venezuela. Due to the extended time scale required for speleogenesis in the hard and barely soluble quartz‐sandstone lithology, these caves are considered to be as old as 20 to 30 My. The study of these peculiar secondary mineral deposits potentially reveals important insights for understanding the interaction between deep, superficial and atmospheric processes over thousands to perhaps millions of years. In this study, chemical and petrographic analyses of potential host rock sources, sulphur and oxygen isotope ratios, and meteorological, hydrological and geographical data are used to investigate the origin of sulphates and phospho–sulphates. The results suggest that the deposition of sulphates in these caves is not linked to the quartz‐sandstone host rock. Rather, these mineral deposits originate from an external atmospheric sulphate source, with potential contributions of marine non‐sea salt sulphates, terrestrial dimethyl sulphide and microbially reduced H2S from the forests or peatbogs within the watershed. Air currents within the caves are the most plausible means of transport for aerosols, driving the accumulation of sulphates and other secondary minerals in specific locations. Moreover, the studied sulphate minerals often co‐occur with silica speleothems of biological origin. Although this association would suggest a possible biogenic origin for the sulphates as well, direct evidence proving that microbes are involved in their formation is absent. Nonetheless, this study demonstrates that these quartz‐sandstone caves accumulate and preserve allogenic sulphates, playing a yet unrecognized role in the sulphur cycle of tropical environments.  相似文献   

5.
The crystal structure of the rare secondary mineral cualstibite-1M (formerly cyanophyllite), originally reported to have the chemical formula 10CuO·2Al2O3·3Sb2O3·25H2O and orthorhombic symmetry, was solved from single-crystal intensity data (Mo- X-radiation, CCD area detector, 293 K, 2θmax?=?80) collected on a twinned crystal containing very minor Mg. The mineral is monoclinic, P21/c (no. 14), with a?=?9.938(1), b?=?8.890(1), c?=?5.493(1) Å, β?=?102.90(1)°, V?=?473.05(11) Å3; R1(F)?=?0.0326. All crystals investigated turned out to be non-merohedric twins. The atomic arrangement has a distinctly layered character. Brucite-like sheets composed of two [4?+?2]-coordinated (Cu,Al,Mg) sites are linked by weak hydrogen-bonding (O···O?~?2.80 Å) to isolated regular Sb(OH)6 octahedra (<Sb-O>?=?1.975 Å). The layered, pseudotrigonal character explains the perfect cleavage and the proneness to twinning. The Sb site is fully occupied and the two (Cu,Al,Mg) sites have occupancies of Cu0.79Al0.17Mg0.04 and Cu0.72Al0.23Mg0.05. The Cu-richer site shows a slightly stronger Jahn-Teller-distortion. The resulting empirical formula, which necessitates a H2O-for-OH substitution to obtain charge balance, is (Cu2.23Al0.63Mg0.14)(OH)5.63(H2O)0.37[Sb5+(OH)6]. The ideal chemical formula is (Cu,Al)3(OH)6[Sb5+(OH)6], with Cu:Al = 2:1. The structure is closely related to those of trigonal cualstibite-1T [Cu2AlSb(OH)12, P-3, with ordered Cu-Al distribution in the brucite sheets], and its Zn analogue zincalstibite-1T [Zn2AlSb(OH)12]. Cualstibite-1M and cualstibite-1T are polytypes and, together with zincalstibite-1T, zincalstibite-9R and omsite, belong to the cualstibite group within the hydrotalcite supergroup, which comprises all natural members of the large family of layered double hydroxides (LDH).  相似文献   

6.
Zusammenfassung Die Kristallstruktur des Johannits wurde anhand eines verzwillingten Kristalls von Joachimsthal, Böhmen, mit dreidimensionalen Röntgendaten bestimmt und für 2005 unabhängige Reflexe aufR=0,039 verfeinert. Johannit kristallisiert triklin, RaumgruppeP1, mita=8,903 (2),b=9,499 (2),c=6,812 (2) Å, =109,87 (1) =112,01 (1), =100,40 (1)° undV=469,9 Å3. Chemische Formel und Zellinhalt lauten Cu(UO2)2(OH)2(SO4)2·8H2O, das ist um zwei H2O-Moleküle mehr als bisher angenommen. In der Struktur sind pentagonal dipyramidale (UO2)(OH)2O3-Polyeder paarweise über eine von zwei OH-Gruppen gebildete Kante zu Doppelpolyedern und diese wiederum durch SO4-Gruppen zu (UO2)2(OH)2(SO4)2-Schichten parallel (100) verknüpft. Die Schichten sind parallel über gestreckte Cu(H2O)4O2-Oktaeder und Wassermoleküle miteinander verbunden. Folgende Bindungslängen wurden gefunden: U–O=1,78 Å (2x) und 2,34–2,39 Å (5x); Cu–O=1,97 Å (4x) und 2,40 Å (2x); =1,47 Å; O–O in Wasserstoffbrücken 2,71–2,91 Å (8x) und 3,30 Å.
The crystal structure of johannite, Cu(UO2)2(OH)2(SO4)2·8H2O
Summary The crystal structure of johannite has been determined from threedimensional X-ray data measured on a twinned crystal from Joachimsthal, Böhmen, and has been refined toR=0.039 for 2005 independent reflections. Johannite crystallizes triclinic, space groupP1, witha=8.903 (2),b=9.499 (2),c=6.812 (2) Å, =109.87(1), =112.01(1), =100.40 (1)° andV=469.9 Å3. Chemical formula and cell content are Cu(UO2)2(OH)2(SO4)2·8H2O, by two H2O molecules more than previously assumed. Pairs of pentagonal dipyramidal (UO2) (OH)2O3 polyhedra form double polyhedra by edgesharing via two OH groups. The double polyhedra are linked by the SO4 tetrahedra to form layers (UO2)2(OH)2(SO4)2 parallel zu (100). These layers are interconnected parallel toa by elongated Cu(H2O)4O2 octahedra and water molecules. Following bond lengths have been observed: U–O=1.78 Å (2x) and 2.34–2.39 Å (5x); Cu–O=1.97 Å (4x) and 2.40 Å (2x); =1.47 Å; O–O for hydrogen bonds 2.71–2.91 Å (8x) and 3.30 Å.


Mit 2 Abbildungen  相似文献   

7.
《Applied Geochemistry》2001,16(7-8):947-961
During dry season baseflow conditions approximately 20% of the flow in Boulder Creek is comprised of acidic metals-bearing groundwater. Significant amounts of efflorescent salts accumulate around intermittent seeps and surface streams as a result of evaporation of acid rock drainage. Those salts include the Fe-sulfates — rhomboclase ((H3O)Fe3+(SO4)2·3H2O), ferricopiapite (Fe3+5(SO4)6O(OH)·20H2O), and bilinite (Fe2+Fe23+(SO4)4·22H2O); Al-sulfates — alunogen (Al2(SO4)3·17H2O) and kalinite (KAl(SO4)2·11H2O); and Ca- and Mg-sulfates — gypsum (CaSO4·2H2O), and hexahydrite (MgSO4·6H2O). The dissolution of evaporative sulfate salt accumulations during the first major storm of the wet season at Iron Mountain produces a characteristic hydrogeochemical response (so-called “rinse-out”) in surface waters that is subdued in later storms. Geochemical modeling shows that the solutes from relatively minor amounts of dissolved sulfate salts will maintain the pH of surface streams near 3.0 during a rainstorm. On a weight basis, Fe-sulfate salts are capable of producing more acidity than Al- or Mg-sulfate salts. The primary mechanism for the production of acidity from salts involves the hydrolysis of the dissolved dissolved metals, especially Fe3+. In addition to the lowering of pH values and providing dissolved Fe and Al to surface streams, the soluble salts appear to be a significant source of dissolved Cu, Zn, and other metals during the first significant storm of the season.  相似文献   

8.
The thermochemistry of jarosite-alunite and natrojarosite-natroalunite solid solutions was investigated. Members of these series were either coprecipitated or synthesized hydrothermally and were characterized by XRD, FTIR, electron microprobe analysis, ICP-MS, and thermal analysis. Partial alkali substitution and vacancies on the Fe/Al sites were observed in all cases, and the solids studied can be described by the general formula K1-x-yNay(H3O)xFezAlw(SO4)2(OH)6-3(3-z-w)(H2O)3(3-z-w). A strong preferential incorporation of Fe over Al in the jarosite/alunite structure was observed. Heats of formation from the elements, ΔH°f, were determined by high-temperature oxide melt solution calorimetry. The solid solutions deviate slightly from thermodynamic ideality by exhibiting positive enthalpies of mixing in the range 0 to +11 kJ/mol. The heats of formation of the end members of both solid solutions were derived. The values ΔH°f = −3773.6 ± 9.4 kJ/mol, ΔH°f = −4912.2 ± 24.2 kJ/mol, ΔH°f = −3734.6 ± 9.7 kJ/mol and ΔH°f = −4979.7 ± 7.5kJ/mol were found for K0.85(H3O)0.15Fe2.5(SO4)2(OH)4.5(H2O)1.5, K0.85(H3O)0.15Al2.5(SO4)2(OH)4.5(H2O)1.5, Na0.7(H3O)0.3Fe2.7(SO4)2(OH)5.1(H2O)0.9, and Na0.7(H3O)0.3Al2.7(SO4)2(OH)5.1(H2O)0.9 respectively. To our knowledge, this is the first experimentally-based report of ΔH°f for such nonstoichiometric alunite and natroalunite samples. These thermodynamic data should prove helpful to study, under given conditions, the partitioning of Fe and Al between the solids and aqueous solution.  相似文献   

9.
《Applied Geochemistry》2007,22(4):760-777
Ochreous precipitate and water samples were collected from the surroundings of seven closed sulphide mines in Finland. In the Hammaslahti Zn–Cu–Au mine, Otravaara pyrite mine and Paroistenjärvi Cu–W–As mine, the collection was repeated in different seasons to study mineralogical and geochemical variations of precipitates. The sampling was done in 1999–2002 from the ditches and drainage ponds of the tailings and waste rock piles that are susceptible to seasonal changes. Mineralogy of the precipitates was evaluated by X-ray diffraction (XRD) and infrared spectroscopy (IR), and precipitate geochemistry was examined by selective extractions. Schwertmannite (Fe8O8(OH)6SO4) was the most typical Fe hydroxide mineral found. Goethite was almost as common as schwertmannite, was often poorly ordered, and contained up to 10 wt.% of SO4. Goethite and schwertmannite were commonly found as mixtures, and they occurred in similar pH and SO4 concentrations. Ferrihydrite (nominally Fe5HO8 · 4H2O) was typically found in areas not influenced by acid mine drainage, and also in acid mine waters with high organic matter or As content. Jarosite (KFe3(SO4)2(OH)6) was found only in one site. In addition, some gypsum (CaSO4 · 2H2O) and aluminous sulphate precipitates (presumably basaluminite, Al4(SO4)(OH)10 · 5H2O) were identified. Selective extractions showed that acid extracts Fetot/Stot-ratios of schwertmannite and goethite samples were similar, but the ratio of oxalate-extractable to total Fe, Feox/Fetot, of goethite samples were lower than those of the schwertmannite samples. Only Al, Si and As were bound to precipitates in substantial amounts, up to several wt.%. In schwertmannites and goethites, Al, Cu, Co, Mn and Zn were mostly structural, substituting for Fe in an Fe oxyhydroxide structure or bound to surface adsorption sites in pores limited by diffusion. In ferrihydrites, heavy metals were also partly bound in adsorbed form dissolving in acid ammonium acetate. Ferrihydrites and goethites were more enriched in Co, Mn and Zn than schwertmannites, but schwertmannites and ferrihydrites were more enriched in As than goethites. Mineralogical and geochemical evidence showed that in the spring, after the snowmelt, the acid mine drainage precipitates were predominantly schwertmannite, and were partly transformed during warm summer months to goethite. The phase transformation of precipitates was followed by a decrease in pH values and increase in SO4 concentrations of waters. Adsorbed As retarded the phase transformation.  相似文献   

10.
Summary The crystal structure of arsentsumebite, ideally, Pb2Cu[(As, S)O4]2(OH), monoclinic, space group P21/m, a = 7.804(8), b = 5.890(6), c = 8.964(8) ?, β = 112.29(6)°, V = 381.2 ?3, Z = 2, dcalc. = 6.481 has been refined to R = 0.053 for 898 unique reflections with I> 2σ(I). Arsentsumebite belongs to the brackebuschite group of lead minerals with the general formula Pb2 Me(XO4)2(Z) where Me = Cu2+, Mn2+, Zn2+, Fe2+, Fe3+; X = S, Cr, V, As, P; Z = OH, H2O. Members of this group include tsumebite, Pb2Cu(SO4)(PO4)(OH), vauquelinite, Pb2Cu(CrO4)(PO4)(OH), brackebuschite, Pb2 (Mn, Fe)(VO4)2(OH), arsenbracke buschite, Pb2(Fe, Zn)(AsO4)2(OH, H2O), fornacite, Pb2Cu(AsO4)(CrO4)(OH), and feinglosite, Pb2(Zn, Fe)[(As, S)O4]2(H2O). Arsentsumebite and all other group members contain M = MT chains where M = M means edge-sharing between MO6 octahedra and MT represents corner sharing between octahedra and XO4 tetrahedra. A structural relationship exists to tsumcorite, Pb(Zn, Fe)2(AsO4)2 (OH, H2O)2 and tsumcorite-group minerals Me(1)Me(2)2(XO4)2(OH, H2O)2. Received June 24, 2000; revised version accepted February 8, 2001  相似文献   

11.
We measured the adsorption of Cu(II) onto kaolinite from pH 3-7 at constant ionic strength. EXAFS spectra show that Cu(II) adsorbs as (CuO4Hn)n−6 and binuclear (Cu2O6Hn)n−8 inner-sphere complexes on variable-charge ≡AlOH sites and as Cu2+ on ion exchangeable ≡X--H+ sites. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed at least up to pH 6.5. Inner-sphere complexes are bound to the kaolinite surface by corner-sharing with two or three edge-sharing Al(O,OH)6 polyhedra. Our interpretation of the EXAFS data are supported by ab initio (density functional theory) geometries of analog clusters simulating Cu complexes on the {110} and {010} crystal edges and at the ditrigonal cavity sites on the {001}. Having identified the bidentate (≡AlOH)2Cu(OH)20, tridentate (≡Al3O(OH)2)Cu2(OH)30 and ≡X--Cu2+ surface complexes, the experimental copper(II) adsorption data can be fit to the reactions
  相似文献   

12.
Infrared and Raman spectra of the basic copper salts malachite, Cu2(OH)2CO3, and brochantite, Cu4(OH)6SO4, as well as of deuterated and 13C substituted samples are presented and discussed in terms of group theory and the hydrogen bonds present. The main results are that (i) the hydrogen donor strengths of the OH? ions are strongly increased due to the very great synergetic effect of the copper ions, (ii) the acceptor strengths of the H-bond acceptor groups (SO4 2-, CO3 2-, and OH? ions) are significantly modified by the linkage and coordination of the acceptor atoms — this complicates true assignment of the OH bands observed to the two and six different OH? ions present in malachite and brochantite, respectively -, and (iii) the Cu — O stretching modes at 430–590 cm?1 and 420–520 cm?1 for malachite and brochantite, respectively, exhibit strong, partially covalent Cu — O bonding.  相似文献   

13.
Mangazeite, a new mineral species, has been found at the Mangazeya silver deposit (300 km east of the Lena River, 65°43′40″ N and 130°20′ E) in eastern Yakutia (Sakha Republic, Siberia, Russia). The new mineral was described from fractured, sericitized, and pyritized granodiorite adjacent to a quartz-arsenopyrite vein. Associated minerals are gypsum and chlorite. The new mineral occurs as radial fibrous segregations of thin lamellar crystals. The size of the fibers does not exceed 40 μm in length and 1 μm across. The mineral is white, with a white streak and a vitreous luster. Mangazeite is transparent in isolated grains. No fluorescence is observed. The Mohs hardness is 1–2. The calculated density is 2.15 g/cm3. The new mineral is biaxial; its optical character was not determined; α = 1.525(9), β was not measured, and γ = 1.545(9). The average chemical composition is as follows (wt %): Al2O3 36.28, SO3 28.81, H2O+ 34.35, total 99.44, H2O? 9.27. The H2O? content was neither included in the total nor used in formula calculation. The empirical formula is Al1.99(SO4)1.01(OH)3.94 · 3.37H2O. The simplified formula is Al2(SO4)(OH)4 · 3H2O. The theoretical chemical composition calculated from this formula is (wt %) Al2O3 37.47, SO3 29.42, H2O 33.11, total 100.00. The new mineral is triclinic; the unit cell parameters refined from X-ray powder diffraction data are a = 8.286(5), b = 9.385(5), c = 11.35(1) Å, α = 96.1(1), β = 98.9(1), γ = 96.6(1)°, and Z = 4. The strongest lines in the X-ray powder diffraction pattern (d(I, %)) are 8.14(19), 7.59(49), 7.16(46), 4.258(100), 4.060(48), and 3.912(43). Mangazeite is supergene in origin and crystallized in a favorable aluminosilicate environment in the presence of sulfate ion due to pyrite oxidation.  相似文献   

14.
15.
The identification of the mineral species controlling the solubility of Al in acidic waters rich in sulfate has presented researchers with several challenges. One of the particular challenges is that the mineral species may be amorphous by X-ray diffraction. The difficulty in discerning between adsorbed or structural sulfate is a further complication. Numerous studies have employed theoretical calculations to determine the Al mineral species forming in acid sulfate soil environments. The vast majority of these studies indicate the formation of a mineral species matching the stoichiometry of jurbanite, Al(OH)SO4·5H2O. Much debate, however, exists as to the reality of jurbanite forming in natural environments, particularly in view of its apparent rare occurrence. In this work the use of Al, S and O K-edge XANES spectroscopy, in combination with elemental composition analyses of groundwater precipitates and a theoretical analysis of soluble Al concentrations ranging from pH 3.5 to 7, were employed to determine the mineral species controlling the solubility of Al draining from acid sulfate soils into Blacks Drain in north-eastern New South Wales, Australia. The results indicate that a mixture of amorphous Al hydroxide (Al(OH)3) and basaluminite (Al4(SO4)(OH)10·5H2O) was forming. The use of XANES spectroscopy is particularly useful as it provides insight into the nature of the bond between sulfate and Al, and confirms the presence of basaluminite. This counters the possibility that an Al hydroxide species, with appreciable amounts of adsorbed sulfate, is forming within these groundwaters.Below approximately pH 4.5, prior to precipitation of this amorphous Al(OH)3/basaluminite mixture, our studies indicate that the Al3+ activity of these acidic sulfate-rich waters is limited by the availability of dissolved Al from exchangeable and amorphous/poorly crystalline mineral species within adjacent soils. Further evidence suggests the Al3+ activity below pH 4.5 is then further controlled by dilution with either rainwater or pH 6-8 buffered estuarine water, and not a notional Al(OH)SO4 mineral species.  相似文献   

16.
Health hazards from heavy metal pollution in water systems are a global environmental problem. Of similar concern is sludge that results from wastewater treatment due to unsatisfactory sludge management technology. Therefore, the effectiveness of using Mg–Al-layered double hydroxide in the removal of heavy metals from mine wastewater was tested and compared with that of calcium hydroxide [Ca(OH)2], which is a common treatment method for heavy metal removal. Initially, the mine wastewater contained cations of the heavy metals iron (Fe), zinc (Zn), copper (Cu), and lead (Pb). The Mg–Al-layered double hydroxides were able to remove 371, 7.2, 121, and 0.4 mg/L of these pollutants, respectively, using the co-precipitation method. The removal of these metals is most effective using 0.5 g Mg–Al-layered double hydroxide (Mg/Al molar ratio 4) and 20 min of shaking. Zn was removed by the formation of Zn(NO3)(OH)·H2O and Zn5(NO3)2(OH)8 when LDH, Mg/Al molar ratios of 4 and 2, respectively, were used. Similarly, Fe, Cu, and Pb were removed by the formation of Fe–Al-layered double hydroxide, Cu2(OH)3·NO3 and Pb4(OH)4(NO3)4, respectively. While Ca(OH)2 is also capable of reducing the heavy metal concentrations below the Japanese recommended values, this analysis shows that using 0.5 g Mg–Al-layered double hydroxide is a better treatment condition for mine wastewater, because it generates lower sludge volumes than 0.1 g of Ca(OH)2. The measured sludge volume was 1.5 mL for Mg–Al-layered double hydroxide and 2.5 mL for Ca(OH)2, a nearly twofold further reduction.  相似文献   

17.
《Applied Geochemistry》2001,16(5):559-570
Fe(II)–Fe(III) layered double hydroxysalt green rusts, GRs, are very reactive compounds with the general formula, [FeII(1−x) FeIIIx (OH)2]x+·[(x/n) An·(m/n) H2O]x, where x is the ratio FeIII/Fetot, and reflects the structure in which brucite-like layers alternate with interlayers of anions An− and water molecules. Two types of crystal structure for GRs, GR1 and GR2, represented by the hydroxychloride GR1(Cl) and the hydroxysulphate GR2(SO42−) are distinguished by X-ray diffraction due to different stacking. By analogy with GR1(Cl) the structure of the fougerite GR mineral, [FeII(1−x) FeIIIx (OH)2]x+·[x OH·(1−x) H2O]x-  Fe(OH)(2+x)·(1−x) H2O, is proposed displaying interlayers made of OH ions and water molecules (in situ deprotonation of water molecules is necessary for explaining the flexibility of its composition). The space group of mineral GR1(OH) would be R3̄m, with lattice parameters a≅0.32 and c≅2.25 nm. Stability conditions and the Eh-pH diagram of Fe(OH)(2+x) (the water molecules are omitted) are determined from hydromorphic soil solution equilibria with GR mineral in Brittany (France). Computed Gibbs free energies of formation from soil solution/mineral equilibrium fit well with a regular solid solution model: μ°[Fe(OH)(2+x)]=(1−x) μ°[Fe(OH)2]+x μ°[Fe(OH)3]+RT [(1−x) ln (1−x)+x ln x]+A0 x (1−x), where μ°[Fe(OH)2]=−492.5 kJ mol−1, μ°[Fe(OH)3]=−641 kJ mol−1 and A0=−243.9 kJ mol−1 at the average temperature of 9±1°C. The upper limit of occurrence of GR mineral at x=2/3, i.e. Fe3(OH)8, is explained by its unstability vs. α-FeOOH and/or magnetite; Fe(OH)3 is thus a hypothetical compound with a GR structure which cannot be observed. These thermodynamic data and Eh-pH diagrams of Fe(OH)(2+x) can be used most importantly to predict the possibility that GR minerals reduce some anions in contaminated soils. The cases of NO3, Se(VI) or Cr(VI) are fully illustrated.  相似文献   

18.
The computer program PHREEQC was used to determined the distribution, chemical speciation and mineral saturation indices in a fresh groundwater environment with limited mining activities in the adjoining areas. The aim was mainly to determine the potential risk of a coastal plain aquifer contamination by some potentially toxic elements. The results show that the elements Ba, Cd, Cu, Fe, Mn, Ni, Rb, Sr, and Zn are distributed as free metal ions. Arsenic is in the neutral form of H3AsO3 o, while three species of aluminium [Al3+, AlOH2, Al(OH)2 +] dominate. The major species of uranium include UO2CO3, UO22++, UO2+, and UO2OH+, respectively, in order of abundance. The groundwater is saturated with respect to alunite [KAl3 (SO4)2 (OH)6], basaluminite [Al4 (OH)10 SO4], boehmite [Al(OH)], Cu metal (Cu), cuprous ferrite (CuFeO2), diaspore [AlO(OH)], gibbsite [Al(OH)3], goethite (FeOOH), hematite (Fe2O3), magnetite (Fe3O4) and uraninite (UO2). Most of the species are not mobile under the prevailing pH (3.3 to 5.9) and Eh (7 to 158 mV) conditions. The mobile ones are very low in concentration and will be immobilized by precipitation of mineral phases. The study concludes that presently these species do not pose any risk to the aquifer.  相似文献   

19.
Summary Niedermayrite, Cu4Cd(SO4)2(OH)6 · 4H2O, is a new mineral discovered in 1995 in the Km3-area of the Lavrion mining district, Greece. It forms tiny euhedral plates, commonly intergrown as green crusts up to several cm2 in size on a matrix consisting of a brecciated marble with sphalerite, chalcopyrite, galena, greenockite, hawleyite and pyrite. Associated secondary minerals are gypsum, malachite, chalcanthite, brochantite, hemimorphite, hydrozincite, aurichalcite, one unknown Cd-sulfate, monteponite and otavite. Niedermayrite is non-fluorescent and has a bluish-green colour with vitreous lustre, the streak is white. The crystals are brittle with perfect cleavage parallel {010}. Optics: biaxial (–) with n(calc.), n, and n =1.609, 1.642(2), and 1.661(2), respectively; orientation n//b. The calculated density is 3.292 gcm–3. The most prominent form is {010}. Analysis by electron microprobe gives CdO 16.5, CuO 45.7, SO3 21.6, H2O 16.2 wt.% (calc. to 100% sum) and the empirical formula Cu4.29Cd0.96S2.01O11.28 · 6.71 H2O (based on 18 oxygens p.f.u.). By TGA an H2O content of 18.9 wt.% was obtained. The ideal formula (confirmed by the crystal structure refinement) is Cu4Cd(SO4)2(OH)6 · 4H2O with a theoretical H2O content of 17.2 wt.%. The strongest lines in the X-ray powder diffraction pattern (Gandolfi camera, visually estimated I, refined lattice parameters a = 5.535(2), b = 21.947(9), c = 6.085(2) Å, = 91.98(3)°) are: (dobs[Å]/Iobs/hkl) (11.02/90/0 2 0), (5.874/20/0 1 1), (5.496/100/0 4 0), (5.322/25/0 2 1), (4.079/50/0 4 1), (3.660/20/0 6 0), (3. 437/30/1 5 0), (3.243/40/1 4 1), (2.470/30/2 4 0), (2.425/20/1 4 –2), (2.205/20/2 6 0) and (1.897/20/1 8 2). The mineral is monoclinic, P21/m, Z = 2, a = 5.543(1) Å, b = 21.995(4) Å, c = 6.079(1) Å, = 92.04(3)°, V = 740.7(2) Å3. The crystal structure was determined by single crystal X-ray methods and was refined to R1= 0.026, wR2 = 0.056. The structure of niedermayrite is characterized by 2 [Cu4(OH)6O2]2– sheets of edgesharing Cu coordination octahedra parallel to (010) with attached SO4 tetrahedra, and intercalated CdO2(H2O)4 octahedra with a system of hydrogen bonds. Close relationships to the crystal structures of christelite and campigliaite exist. The new mineral is named for Dr. Gerhard Niedermayr, Naturhistorisches Museum Wien, Austria.
Niedermayrit, Cu4Cd(SO4)2(OH)6 · 4H2O, ein neues Mineral aus dem Bergbaugebiet Lavrion, Griechenland
Zusammenfassung Niedermayrit, Cu4Cd(SO4)2(OH)6 · 4H2O, ist ein neues Mineral, das 1995 im Km3-Bereich des Bergbaugebietes Lavrion, Griechenland, gefunden wurde. Es bildet winzige gut ausgebildete Plättchen, häufig miteinander verwachsen in grünen Krusten bis zu mehreren cm2 Größe. Die Matrix besteht aus brecciösem Marmor mit Sphalerit, Chalcopyrit, Galenit, Greenockit, Hawleyit und Pyrit. Sekundäre Begleitminerale sind Gips, Malachit, Chalcanthit, Brochantit, Hemimorphit, Hydrozincit, Aurichalcit, ein unbekanntes Cd-Sulfat, Monteponit und Otavit. Niedermayrit fluoresziert nicht, besitzt blaugrüne Farbe mit Glasglanz, der Strich ist weiß. Die Kristalle sind spröd mit perfekter Spaltbarkeit parallel {010}. Optik: biaxial (–) mit n(ber.), n, und n=1.609, 1.642(2), und 1.661(2); Orientierung n//b. Die berechnete Dichte beträgt 3.292 gcm–3. Die auffallendste Flächenform ist {010}. Die chemische Analyse mittels Mikrosonde ergibt CdO 16.5, CuO 45.7, SO3 21.6, H2O 16.2wt.% (ber. auf 100% Summe) und die empirische Formel Cu4.29Cd0.96S2.01O11.28 · 6.71 H2O (basierend auf 18 Sauerstoffatomen pro Formeleinheit). Aus der TGA wurde ein H2O Gehalt von 18.9 Gew.% erhalten. Die Idealformel (bestätigt durch die Kristallstrukturverfeinerung) ist Cu4Cd(SO4)2(OH)6 · 4H2O bei einem theoretischen H2O-Gehalt von 17.2 Gew.%. Die stärksten Linien im Pulverdiffraktogramm (Gandolfi Kamera, visuell geschätzte I, verfeinerte Gitterkonstanten a = 5.535(2), b = 21.947(9), c = 6.085(2) Å, = 91.98(3)°) sind: (dobs[Å]/Iobs/hkl) (11.02/90/0 2 0), (5.874/20/0 1 1), (5.496/100/0 4 0), (5.322/25/0 2 1), (4.079/50/0 4 1), (3.660/20/0 6 0), (3.437/30/1 5 0), (3.243/40/1 4 1), (2.470/30/2 4 0), (2.425/20/1 4 –2), (2.205/20/2 6 0) und (1.897/20/1 8 2). Das Mineral ist monoklin, P21/m, Z = 2, a = 5.543(1) Å, b = 21.995(4) Å, c = 6.079(1) Å, = 92.04(3)°, V = 740.7(2) Å3 Die Kristallstruktur wurde mittels Einkristallröntgenmethoden bestimmt und zu R1 = 0.026, wR2 = 0.056 verfeinert. Die Struktur von Niedermayrit ist durch 2 [Cu4(OH)6O2]2– Schichten von kantenverknüpften Cu-Koordinationsoktaedern parallel (010) gekennzeichnet mit damit verbundenen SO4 Tetraedern und dazwischen befindlichen CdO2(H2O)4 Oktaedem mit einem Wasserstoffbrückensystem. Es bestehen enge Beziehungen mit den Kristallstrukturen von Christelit und Campigliait. Das neue Mineral ist nach Dr. Gerhard Niedermayr, Naturhistorisches Museum Wien, Österreich, benannt.


With 7 Figures  相似文献   

20.
The crystal structure of ilinskite, NaCu5O2(SeO3)2Cl3, a rare copper selenite chloride from volcanic fumaroles of the Great fissure Tolbachik eruption (Kamchatka peninsula, Russia), has been solved by direct methods and refined to R 1?=?0.044 on the basis of 2720 unique observed reflections. The mineral is orthorhombic, Pnma, a?=?17.769(7), b?=?6.448(3), c?=?10.522(4) Å, V?=?1205.6(8) Å3, Z?=?4. The The CuOmCln coordination polyhedra share edges to form tetramers that have 'additional' O1 and O2 atoms as centers. The O1Cu4 and O2Cu4 tetrahedra share common Cu atoms to form [O2Cu5]6+ sheets. The SeO3 groups and Cl atoms are adjacent to the [O2Cu5]6+ sheets to form complex layers parallel to (100). The Na+ cations are located in between the layers. A review of mixed-ligand CuOmCln coordination polyhedra in minerals and inorganic compounds is given. There are in total 26 stereochemically different mixed-ligand Cu-O-Cl coordinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号