首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
近年来,以卷积神经网络(Convolutional Neural Network,CNN)为代表的深度学习方法在图像识别领域取得了巨大进展,但尚未在SAR目标识别领域得到广泛应用。基于此,将具有代表性的LeNet,AlexNet,VGGNet,GoogLeNet,ResNet,DenseNet,SENet等卷积神经网络模型应用到SAR图像目标识别上,并依据识别精度、模型尺寸、运行时间等指标在公开SAR数据集MSTAR上对9类目标进行识别实验。详细对比分析了不同CNN模型的综合性能,验证了利用CNN网络模型进行SAR图像目标识别的优越性,同时也为该领域的后续工作提供了参考基准。  相似文献   

2.
基于半监督学习的SAR目标检测网络   总被引:1,自引:0,他引:1  
现有的基于卷积神经网络(CNN)的合成孔径雷达(SAR)图像目标检测算法依赖于大量切片级标记的样本,然而对SAR图像进行切片级标记需要耗费大量的人力和物力。相对于切片级标记,仅标记图像中是否含有目标的图像级标记较为容易。该文利用少量切片级标记的样本和大量图像级标记的样本,提出一种基于卷积神经网络的半监督SAR图像目标检测方法。该方法的目标检测网络由候选区域提取网络和检测网络组成。半监督训练过程中,首先使用切片级标记的样本训练目标检测网络,训练收敛后输出的候选切片构成候选区域集;然后将图像级标记的杂波样本输入网络,将输出的负切片加入候选区域集;接着将图像级标记的目标样本也输入网络,对输出结果中的正负切片进行挑选并加入候选区域集;最后使用更新后的候选区域集训练检测网络。更新候选区域集和训练检测网络交替迭代直至收敛。基于实测数据的实验结果证明,所提方法的性能与使用全部样本进行切片级标记的全监督方法的性能相差不大。  相似文献   

3.
近年来,卷积神经网络(Convolutional Neural Network,CNN)在合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标分类中取得了较好的分类结果。CNN结构中,前面若干层由交替的卷积层、池化层堆叠而成,后面若干层为全连接层。全卷积神经网络(All Convolutional Neural Network, A-CNN)是对CNN结构的一种改进,其中池化层和全连接层都用卷积层代替,该结构已在计算机视觉领域被应用。针对公布的MSTAR数据集,提出了基于A-CNN的SAR图像目标分类方法,并与基于CNN的SAR图像分类方法进行对比。实验结果表明,基于A-CNN的SAR图像目标分类正确率要高于基于CNN的分类正确率。  相似文献   

4.
卷积神经网络(CNN)的特征提取能力与其参数量有关,一般来说,参数量越多,CNN的特征提取能力越强。但要学好这些参数需要大量的训练数据,而在实际应用中,可用于模型训练的合成孔径雷达(SAR)图像往往是有限的。减少CNN的参数量可以降低对训练样本的需求,但同时也会降低CNN的特征表达能力,影响其目标识别性能。针对此问题,该文提出一种基于属性散射中心(ASC)卷积核调制的SAR目标识别深层网络。由于SAR图像具有电磁散射特性,为了提取更符合SAR目标特性的散射结构和边缘特征,所提网络使用预先设定的具有不同指向和长度的ASC核对少量CNN卷积核进行调制以生成更多卷积核,从而在降低网络参数量的同时保证其特征提取能力。此外,该网络在浅层使用ASC调制卷积核来提取更符合SAR图像特性的散射结构和边缘特征,而在高层使用CNN卷积核来提取SAR图像的语义特征。由于同时使用ASC调制卷积核和CNN卷积核,该网络能够兼顾SAR目标的电磁散射特性和CNN的特征提取优势。使用实测SAR图像进行的实验证明了所提网络可以在降低对训练样本需求的同时保证优秀的SAR目标识别性能。  相似文献   

5.
针对合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标分辨率差异大,多尺度SAR图像目标分类准确率不高的问题,提出了一种基于迁移学习和分块卷积神经网络(Convolutional Neural Network, CNN)的SAR图像目标分类算法。首先通过大量与目标域相近的源域数据对分块CNN的参数进行训练,得到不同尺度下的CNN特征提取网络;其次将CNN的卷积和池化层迁移到新的网络结构中,实现目标特征的提取;最后用超限学习机(Extreme Learning Machine, ELM)网络对提取的特征进行分类。实验数据采用美国MSTAR数据库以及多尺度SAR图像舰船目标数据集,实验结果表明,该方法对多尺度SAR图像的分类效果优于传统CNN。  相似文献   

6.
近年来,基于卷积神经网络(Convolutional Neural Network, CNN)的合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标识别得到深入研究。全卷积神经网络(Fully Convolutional Neural Network, FCNN)是CNN结构上的改进,它比CNN能获得更高的识别率,但在训练过程中仍需要大量的带标签训练样本。该文提出一种基于FCNN和改进的卷积自编码器(Improved Convolutional Auto-Encoder, ICAE)的SAR图像目标识别方法,即先用ICAE无监督训练方式获得的编码器网络参数初始化FCNN的部分参数,后用带标签训练样本对FCNN进行训练。基于MSTAR数据集的十类目标分类实验结果表明,在不扩充带标签训练样本的情况下,该方法不仅能获得98.14%的平均正确识别率,而且具有较强的抗噪声能力。   相似文献   

7.
随着人工智能与合成孔径雷达(synthetic aperture radar,SAR)技术的发展,基于卷积神经网络(convolutional neural network,CNN)的SAR图像自动目标识别技术取得了一定的突破.然而,由于飞机自身结构以及SAR成像机制的复杂性,在复杂环境大场景SAR图像中对飞机目标进行快速准确的检测依然存在挑战.为提升算法的检测能力,本文对现有检测算法的处理流程进行了分析与总结,并提出了一种复杂环境大场景SAR图像飞机目标快速检测算法.算法优化了整体检测流程,设计了基于灰度特征的机场区域精细化提取和基于CNN的飞机目标粗检测两大子模块,并采用了YOLOv3网络对机场区域以及飞机目标分别进行初步的提取与检测.实验结果表明,本文算法对复杂环境大场景SAR图像中的飞机目标具有高效的检测能力.  相似文献   

8.
杜兰  刘彬  王燕  刘宏伟  代慧 《电子与信息学报》2016,38(12):3018-3025
该文研究了训练样本不足的情况下利用卷积神经网络(Convolutional Neural Network, CNN)对合成孔径雷达(SAR)图像实现目标检测的问题。利用已有的完备数据集来辅助场景复杂且训练样本不足的数据集进行检测。首先用已有的完备数据集训练得到CNN分类模型,用于对候选区域提取网络和目标检测网络做参数初始化;然后利用完备数据集对训练数据集做扩充;最后通过四步训练法得到候选区域提取模型和目标检测模型。实测数据的实验结果证明,所提方法在SAR图像目标检测中可以获得较好的检测效果。  相似文献   

9.
近年来,卷积神经网络(CNN)已广泛应用于合成孔径雷达(SAR)目标识别。由于SAR目标的训练数据集通常较小,基于CNN的SAR图像目标识别容易产生过拟合问题。生成对抗网络(GAN)是一种无监督训练网络,通过生成器和鉴别器两者之间的博弈,使生成的图像难以被鉴别器鉴别出真假。本文提出一种基于改进的卷积神经网络(ICNN)和改进的生成对抗网络(IGAN)的SAR目标识别方法,即先用训练样本对IGAN进行无监督预训练,再用训练好的IGAN鉴别器参数初始化ICNN,然后用训练样本对ICNN微调,最后用训练好的ICNN对测试样本进行分类。MSTAR实验结果表明,提出的方法不仅能够在训练样本数降至原样本数30%的情况下获得高达96.37%的识别率,而且该方法比直接采用ICNN的方法具有更强的抗噪声能力。  相似文献   

10.
基于Faster-RCNN和多分辨率SAR的海上舰船目标检测   总被引:1,自引:0,他引:1  
《无线电工程》2018,(2):96-100
由于海洋表面微波散射情况复杂,强海洋杂波的后向散射往往高于舰船,导致传统舰船检测算法适应能力有限,已经难以满足现阶段舰船智能检测的需求。针对上述问题,将卷积神经网络(CNN)应用于SAR海上舰船目标检测。选取高分辨率Terra SAR-X与低分辨率Sentinel-1A卫星SAR图像。通过SAR仿真分析了不同分辨率下海杂波的特点,据此分析了针对SAR图像的CNN网络结构设计的基本需求。通过分辨率归一化制作混合数据的训练样本集,在Faster-RCNN框架下设计并构建了一个仅3层卷积神经网络用于特征学习,以防止模型过拟合。实验选择了4种不同海洋杂波环境的宽幅SAR图像进行测试,均获得了较好的检测结果。表明提出的多分辨率归一化方法结合卷积神经网络的SAR舰船检测模型具有一定的应用潜力。  相似文献   

11.
为有效识别视觉系统采集的可见光图像中的舰船目标,提出了基于YOLO(You Only Look Once)网络模型改进的10层的卷积神经网络(Convolutional Neural Network,CNN)用于水面舰船目标的智能识别,通过反卷积的方法可视化CNN中不同卷积层提取到的舰船目标特征。按照传统目标识别方法提取了舰船目标的四类典型人工设计特征,将所提CNN的舰船目标识别结果与YOLO网络模型及四类人工设计特征结合支持向量机用于舰船目标识别的结果进行比较。实验结果表明,与YOLO网络模型相比,综合精确率、召回率和效率3个舰船目标识别的性能指标,改进后的CNN性能更好,从而验证了所提方法的有效性。不同数据量下采用典型特征识别舰船目标与基于深度CNN识别舰船目标的识别结果比较说明了不同类型目标识别算法的优劣势,有利于推动综合性视觉感知框架的构建。  相似文献   

12.
以卷积神经网络为代表的深度学习算法高度依赖于模型的非线性和调试技术,在实际应用过程中普遍存在黑箱属性,严重限制了其在安全敏感领域的进一步发展。为此,该文提出一种由粗到细的类激活映射算法(CF-CAM),用于对深度神经网络的决策行为进行诊断。该算法重新建立了特征图和模型决策之间的关系,利用对比层级相关性传播理论获取特征图中每个位置对网络决策的贡献生成空间级的相关性掩码,找到影响模型决策的重要性区域,再与经过模糊化操作的输入图像进行线性加权重新输入到网络中得到特征图的目标分数,从空间域和通道域实现对深度神经网络进行由粗到细的解释。实验结果表明,相较于其他方法该文提出的CF-CAM在忠实度和定位性能上具有显著提升。此外,该文将CF-CAM作为一种数据增强策略应用于鸟类细粒度分类任务,对困难样本进行学习,可以有效提高网络识别的准确率,进一步验证了CF-CAM算法的有效性和优越性。  相似文献   

13.
针对合成孔径雷达(Synthetic Aperture Radar, SAR)的图像目标识别应用, 该文提出了一种基于卷积神经网络(Convolutional Neural Network, CNN)的SAR图像目标识别方法。首先通过在误差代价函数中引入类别可分性度量, 提高了卷积神经网络的类别区分能力;然后利用改进后的卷积神经网络对SAR图像进行特征提取;最后利用支持向量机(Support Vector Machine, SVM)对特征进行分类。使用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition, MSTAR)SAR图像数据进行实验, 识别结果证明了所提方法的有效性。   相似文献   

14.
目标识别是合成孔径雷达(Synthetic Aperture Radar,SAR)图像解译的重要步骤。鉴于卷积神经网络(Convolutional Neural Network, CNN)在自然图像分类领域表现优越,基于CNN的SAR图像目标识别方法成为了当前的研究热点。SAR图像目标的散射特征往往存在于多个尺度当中,且存在固有的噪声斑,含有冗余信息,因此,SAR图像目标智能识别成为了一项挑战。针对以上问题,本文提出一种多尺度注意力卷积神经网络,结合多尺度特征提取和注意力机制,设计了基于注意力的多尺度残差特征提取模块,实现了高精度的SAR遥感图像目标识别。该方法在MSTAR数据集10类目标识别任务中的总体准确率达到了99.84%,明显优于其他算法。在测试集加入4种型号变体后,10类目标识别任务中的总体准确率达到了99.28%,验证了该方法在复杂情况下的有效性。  相似文献   

15.
王晨  王明江  陈嵩 《信号处理》2023,39(1):116-127
为了提高车载毫米波雷达在复杂城市道路环境中目标检测的抗杂波与干扰能力,本文利用卷积神经网络(CNN)特征参数提取和目标分类特性,提出了一种改进的基于CNN的车载毫米波雷达目标检测方法。该方法首先将毫米波雷达回波信号距离-多普勒二维数据运用滑窗进行分割,并采用CNN网络模型处理分割后的二维矩阵,训练二维CNN网络模型及其参数,使其具有提取回波特征并基于特征参数模型进行目标分类的能力,从而实现目标检测功能。通过对卷积神经网络模型结构进行优化,增加批量归一化层,优化Dropout层使得低权重特征失活,自适应地删减部分神经元节点修正该层非线性激活函数,进一步降低了CNN模型目标检测的虚警概率。实验结果表明,在相同虚警概率条件下,CNN网络检测方法目标发现概率优于传统的单元平均恒虚警检测方法,并且在低信噪比的条件下仍然能够保持较高的发现概率;在同等发现概率水平下,修正后CNN网络检测方法的虚警概率较修正前可提高约1个数量级。  相似文献   

16.
随着深度学习方法在合成孔径雷达(SAR)图像解译领域的广泛应用,SAR目标识别深度网络可理解性问题逐渐受到学者的关注。类激活映射(CAM)作为常用的可理解性算法,能够通过热力图的方式,直观展示对识别任务起作用的显著性区域。然而作为一种事后解释的方法,其只能静态展示当次识别过程中的显著性区域,无法动态展示当输入发生变化时显著性区域的变化规律。该文将扰动的思想引入类激活映射,提出了一种基于SAR背景杂波特性类激活映射方法(SCC-CAM),通过对输入图像引入同分布的全局扰动,逐步向SAR识别深度网络施加干扰,使得网络判决发生翻转,并在此刻计算网络神经元输出激活值的变化程度。该方法既能解决添加扰动可能带来的扰动传染问题,又能够动态观察和度量目标识别网络在识别过程中显著性区域的变化规律,从而增强深度网络的可理解性。在MSTAR数据集和OpenSARShip-1.0数据集上的试验表明,该文提出的算法具有更加精确的定位显著性区域的能力,相比于传统方法,在平均置信度下降率、置信度上升比例、信息量等评估指标上,所提算法具有更强的可理解性,能够作为通用的增强网络可理解性的方法。  相似文献   

17.
针对传统卷积神经网络(CNN)频谱感知方法提取特征能力受限于网络结构简单,增加网络结构又容易出现梯度消失等问题,该文通过在传统卷积神经网络中添加捷径连接,实现输入层恒等映射更深的网络,提出一种基于深度卷积神经网络(DCNN)的协作频谱感知方法。该方法将频谱感知问题转化为图像二分类问题,对正交相移键控(QPSK)信号的协方差矩阵进行归一化灰度处理,并作为深度卷积神经网络的输入,通过残差学习训练深度卷积神经网络模型,提取2维灰度图像的深层特征,将测试数据输入到训练好的模型中,完成基于图像分类的频谱感知。实验结果表明:与传统的频谱感知方法相比,在低信噪比(SNR)下、多用户协作感知时,所提方法具有更高的检测概率和更低的虚警概率。  相似文献   

18.
李汪华  张贞凯 《电讯技术》2023,63(12):1918-1924
针对合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标识别问题,提出了一种基于集成卷积神经网络(Convolutional Neural Network, CNN)的SAR图像目标识别方法。首先对原始数据集进行数据增强的预处理操作,以扩充训练样本;接着通过重采样的方法从训练样本中获取不同的训练子集,并在训练各基分类器时引入Dropout和Padding操作,有效增强了网络泛化能力;然后采用Adadelta算法与Nesterov动量法结合的思想来优化网络,提高了网络的收敛速度和识别精度;最后采用相对多数投票法对基分类器的分类结果进行集成。在MSTAR数据集上进行的实验结果表明,集成后的模型识别准确率达到99.30%,识别性能优于单个卷积神经网络,具有较强的泛化能力和较好的稳健性。  相似文献   

19.
朱继洪  裴继红  赵阳 《信号处理》2019,35(4):640-648
本文提出了一种基于样本图像局部模式聚类的卷积核初始化方法,该方法可用于卷积神经网络(Convolutional neural network, CNN)训练中卷积核的初始化。在卷积神经网络中,卷积核的主要作用可看成是利用匹配滤波提取图像中的局部模式,并将其作为后续图像目标识别的特征。为此本文在图像训练集中选取一部分典型的样本图像,在这些图像中抽取与卷积核相同大小的子图作为图像局部模式矢量集合。首先对局部模式子图集合应用拓扑特性进行粗分类,然后对粗分类后的每一子类采用势函数聚类的方法获取样本图像中的典型局部模式子图,构成候选子图模式集,用它们作为CNN的初始卷积核进行训练。实验结果表明,本文方法可以明显加速CNN网络训练初期的收敛速度,同时对最终训练后的网络识别精度也有一定程度的提高。   相似文献   

20.
基于卷积神经网络的图像分类算法综述   总被引:1,自引:0,他引:1       下载免费PDF全文
杨真真  匡楠  范露  康彬 《信号处理》2018,34(12):1474-1489
随着大数据的到来以及计算能力的提高,深度学习(Deep Learning, DL)席卷全球。传统的图像分类方法难以处理庞大的图像数据以及无法满足人们对图像分类精度和速度上的要求,基于卷积神经网络(Convolutional Neural Network, CNN)的图像分类方法冲破了传统图像分类方法的瓶颈,成为目前图像分类的主流算法,如何有效利用卷积神经网络来进行图像分类成为国内外计算机视觉领域研究的热点。本文在对卷积神经网络进行系统的研究并且深入研究卷积神经网络在图像处理中的应用后,给出了基于卷积神经网络的图像分类所采用的主流结构模型、优缺点、时间/空间复杂度、模型训练过程中可能遇到的问题和相应的解决方案,与此同时也对基于深度学习的图像分类拓展模型的生成式对抗网络和胶囊网络进行介绍;然后通过仿真实验验证了在图像分类精度上,基于卷积神经网络的图像分类方法优于传统图像分类方法,同时综合比较了目前较为流行的卷积神经网络模型之间的性能差异并进一步验证了各种模型的优缺点;最后对于过拟合问题、数据集构建方法、生成式对抗网络及胶囊网络性能进行相关实验及分析。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号