首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
WO3纳米微粒的制备及气敏特性研究进展   总被引:14,自引:0,他引:14  
综述了近年来国内外对WO3纳米微粒作为气敏材料时的制备方法进展,对WO3的气敏机理进行了探讨,并总结了不同化合物的掺杂对其气敏性能的影响。  相似文献   

2.
WO3薄膜是一种智能材料,在电致变色、共催化和气敏性方面具有广阔的应用前景。综述了WO3薄膜材料的制备方法及现状,并对其优缺点进行了评价。介绍了气敏性方面的应用和机理,说明了不同掺杂对气敏的影响;并对今后的发展方向提出了一些看法。  相似文献   

3.
WO3中的掺杂及其气敏特性   总被引:27,自引:2,他引:25  
全宝富  周生玉 《功能材料》1997,28(2):177-181
在WO3微粉料中掺入1wt%的不同金属氧化物或金属盐,使WO3的气敏性能明显变化,掺入Th^=4,Cd^+4,Li^+1,Ag^+1等可提高对H2S的灵敏度,掺入R^+3,Th^+4,Ce^+4等可增加对乙醇等气体的灵敏性,而对H2,CO,CH4,C4H10等不敏感,而且具有良好的响应恢复特性。  相似文献   

4.
为降低WO3气敏元件的工作电压,改善WO3基敏感材料的气敏性能,采用化学吸附沉淀-水热法合成WO3和WO3/SWCNT复合材料,并研究矿化剂用量和SWCNT掺杂量对其气敏性能的影响.结果表明,大剂量矿化剂的使用会降低WO3的气敏性能;碳纳米管掺杂可以使WO3在较低的工作温度下有较高的灵敏度.SWCNT掺杂量为1%的元件...  相似文献   

5.
纳米WO3薄膜   总被引:6,自引:1,他引:6  
综述了纳米WO3薄膜的制备、表征及其在电致变色、气敏材料、共催化剂等方面的应用和作用原理.  相似文献   

6.
溶胶—凝胶法制备WO3—SiO2材料的氨敏特性研究   总被引:21,自引:0,他引:21  
王旭升  张良莹 《功能材料》1998,29(3):276-280
采用溶胶-凝胶法制备了WO3+xwt%SiO2(x=0,5,10,20)粉体材料。对其结构、形貌进行了XRD、AFM、XPS和比表面积测量、分析,结果表明:获得了单斜晶系结构的WO3多晶材料;晶粒尺寸随SiO2含量的增加而减小。测量了材料的NH3气敏特性,得到敏感元件的电阻和灵敏度随SiO2含量的增加而增加;溶胶-凝胶法制备的WO3+5wt%SiO2粉料用于NH3测量具有优良的特性,在350℃及以上应用优于纯WO3材料。  相似文献   

7.
为了解国内外SnO2气敏材料及其制备技术的研究进展,对纳米SnO2粉体材料以及膜的制备技术和研究进展进行了详细的综述,并对其未来的发展趋势进行了展望。结果认为,SnO2纳米粉体与SnO2膜等气敏材料的制备与使用仍是今后一段时间内重点发展对象;制备技术的不断成熟将使SnO2纳米功能材料作为气敏材料而深入研究和广泛应用,结合掺杂等手段,将进一步推动SnO2气敏元件的高效微型、集成化、智能化发展。  相似文献   

8.
以三氧化钨为基材,通过掺杂制作了半导体型氯化氢气体传感器,研究元件的气敏特性.以钨酸钠和浓盐酸为反应物,采用溶胶一凝胶法,制备出具有特殊结构的三氧化钨.通过XRD、SEM、TEM等微观分析手段,发现该材料具有层片状结构,结构松散,平均粒径约17纳米.研究发现,掺杂适量的氧化铝可以大大提高三氧化钨对氯化氢气体的灵敏度,但元件稳定性以及选择性比较差,通过掺杂少量的氧化锌,虽然降低了元件的灵敏度,却可以大大提高元件的稳定性,适当提高加热电压,可抑制元件对NO2等气体的灵敏度,提高选择性.本文对三氧化钨的气敏机理及特性进行分析.  相似文献   

9.
SiO2-WO3纳米粉体的合成及其气敏特性   总被引:3,自引:0,他引:3  
采用化学沉淀法制备了xwt%SiO2-WO3(x=0,3,5,10,15)粉体材料,利用X射线衍射仪、透射电镜等测试手段分析了材料的微观结构,探讨了掺杂量、元件工作温度与W03气敏性能的关系.研究发现:SiO2的掺杂提高了WO3粉体材料对H2S气体的灵敏度,其中掺杂量为5%的烧结型气敏元件在180℃下对H2S气体有较高的灵敏度和选择性;本文还对WO3的H2S气敏机理进行了探讨.  相似文献   

10.
用沉淀-水解法制备ZrO2纳米晶须   总被引:3,自引:0,他引:3  
用沉淀-水解法制备的ZrO2纳米晶须,其平均尺寸为直径4nm,长10~20nm,其晶相由X射线衍射确认为单斜相,对其开头和大小进行了透射电镜和激光散射分析,ZrO2纳米晶须在水溶液中出现软团聚,团聚体平均尺寸约为90nm,纳米级ZrO2粒子对乙醇及丁烷有好的气敏性,比用直接水热法制备的敏感性能提高30%左右。  相似文献   

11.
微乳液法制备纳米银粒子   总被引:24,自引:3,他引:24  
梁桂勇  翟学良 《功能材料》1999,30(5):484-485
采用SDS/异戊醇/二甲苯/水体系,用水合肼还原硝酸银制备了钠米级银粒子,并考察了体系中含水量,粒子浓度及异戊醇含量等因素对银粒径大小的影响。  相似文献   

12.
13.
三氧化钨(WO_3)因其氧含量与氧缺陷随着环境因素变化而变化,使得其成为一种理想的二氧化氮(NO_2)气敏材料。简要介绍了WO_3材料的结构、特性和NO_2气敏机理,综述了近5年来高性能WO_3气敏材料在NO_2气体检测中的最新研究进展,分析了WO_3气敏材料存在的主要问题与挑战,重点讨论高比表面积WO_3材料、WO_3复合材料等的解决途径。最后,展望了WO_3气敏材料在NO_2气敏传感器中的发展方向和应用前景,提出了开发低电阻WO_3膜电极是未来高性能NO_2传感器的研究重点。  相似文献   

14.
对Bi2O3超细粉体的制备方法、生产工艺和原理进行了综述,对比了各制备方法的优缺点,提出了Bi2O 3超细粉体制备存在的问题和今后发展方向。指出控制晶体粒度的大小和提高产品的均匀性是制备超细Bi2O3粉体的关键问题,必须对制备过程的力学规律和动力学条件进行深入研究。  相似文献   

15.
Sol-gel method was employed for the preparation of nanoscale tungsten powder. The effects of different preparation conditions on particle size were discussed and the optimum preparation condition was found. The products were characterized by X-ray diffraction, scan electron microscopy and so on. The results show that the intermediate is monoclinic WO3, its particle shape is approximately spherical, and the particle size distribution is narrow. The average particle size is about 60 nm. After deoxidization, WO3 turns into cubic tungsten powder with small particle size (average particle size about 120 nm) and narrow size distribution.  相似文献   

16.
纳米WO_3粉体制备工艺的研究与表征   总被引:2,自引:0,他引:2  
在十六烷基三甲基溴化铵(CTAB)/正丁醇/环己烷/水溶液(Na2WO4)组成的微乳液体系中加入浓盐酸制备WO3纳米粉体,并确定了最佳的制备工艺。利用XRD、TG、TEM、FTIR和UV-Vis等分析手段对产物的结构和性质进行了表征。实验结果显示,前驱物粉末经500℃恒温处理3h后,获得的浅黄色纳米WO3产物为单斜晶相,平均粒径约为55nm,呈类球形结构。  相似文献   

17.
In2O3薄膜及纳米颗粒制备进展   总被引:6,自引:0,他引:6  
主要介绍了In2O2薄膜及其纳米颗粒的制备方法和特点,并比较了它们的优缺点。  相似文献   

18.
孔慧  刘卫丽  宋志棠 《材料导报》2018,32(10):1683-1687
以低成本工业级硅酸钠为原料,采用离子交换法制备了非球形纳米二氧化硅颗粒。在制备过程中,采用控制无机碱催化剂1%(质量分数)氢氧化钠水溶液滴加到活性硅酸速度的方法来控制二氧化硅晶核成核的形貌,进而控制二氧化硅颗粒的形貌,避免了传统方法(通过引入有机碱或者引入二价或三价阳离子)制备非球形二氧化硅颗粒的不足。扫描电镜显示所制备的二氧化硅颗粒为非球形(呈花生、哑铃或枣状),轴向粒径为10~20nm,径向粒径为45~80nm。激光粒度分析仪测试表明非球形颗粒高斯分布平均粒径为39.0nm,多分散指数高达0.261。该方法制备非球形二氧化硅颗粒步骤简单、环境友好,非常有利于工业化生产与应用。  相似文献   

19.
20.
基于不同领域对钨合金球性能指标的要求,总结并综述了制备钨合金球的材料体系、制备方法及性能检测方法等,对钨合金球的应用领域及今后研究发展方向进行了简单概述,以期为钨合金球的制备研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号