首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate a facile and scalable technique, rotational freezing, to produce porous tubular ceramic supports with radially aligned porosity. The method is based on a conventional ice-templating process in a rotatory mold and demonstrated here with yttria-stabilized zirconia (YSZ). We investigated the effects of solid loading, freezing temperature, and volume of the slurry on the microstructure, strength (o-ring test and four-point bending), and air permeability. The results show that pore volume and pore size can be controlled by the solid loading and freezing temperature respectively, and overall tube thickness can be adjusted by the volume of slurry initially poured into the mold. Decreasing pore size and pore volume increases the mechanical properties but decreases the air permeability. These tubes could be particularly interesting as tubular membrane supports such as oxygen transport membranes.  相似文献   

2.
Highly permeable AlN micro-honeycomb (AlN-H) ceramics with unidirectional macropore channels and porous struts were fabricated via tertiary butyl alcohol (TBA)-based freeze-casting. The effect of the AlN solid loading of the freezing slurries on the microstructure, open porosity, N2 gas permeability, and compressive strength of the as-prepared AlN-Hs were systematically investigated. The results showed that the honeycomb structure and open porosity of the AlN-Hs can be adjusted by altering solid loading. With the increase in solid loading from 10 vol% to 30 vol%, the approximate pore channel size of the AlN-Hs decreased from 50.1 μm to 15.6 μm, strut thickness increased from 8.2 μm to 16.6 μm approximately, and the corresponding open porosity decreased from 87.6–56.6%. The as-fabricated AlN-H with an open porosity of 64.9% possessed high N2 gas permeability and essential compressive strength and can be used as a catalyst support or filter in industries.  相似文献   

3.
《Ceramics International》2022,48(8):10472-10479
Porous mullite ceramics are widely used in heat insulation owing to their high temperature and corrosion resistant properties. Reducing the thermal conductivity by increasing porosity, while ensuring a high compressive strength, is vital for the synthesis of high-strength and lightweight porous mullite ceramics. In this study, ceramic microspheres are initially prepared from pre-treated high-alumina fly ash by spray drying, and then used to successfully prepare porous mullite ceramics with enhanced compressive strength via a simple direct stacking and sintering approach. The influence of sintering temperature and time on the microstructure and properties of porous mullite ceramics was evaluated, and the corresponding formation mechanism was elucidated. Results show that the porous mullite ceramics, calcined at 1550 °C for 3 h, possess a porosity of 47%, compressive strength of 31.4 MPa, and thermal conductivity of 0.775 W/(m?K) (at 25 °C), similar to mullite ceramics prepared from pure raw materials. The uniform pore size distribution and sintered neck between the microspheres contribute to the high compressive strength of mullite ceramics, while maintaining high porosity.  相似文献   

4.
The frozen moulds, including homogeneous, unidirectional and bidirectional freezing, were designed using materials with different thermal conductivities, and the temperature variations of the moulds and samples during the freezing process were simulated by finite element analysis. Highly porous SiC ceramics with significant differences in pore structure were fabricated by using the SiC/water slurries prepared via uniform or oriented freeze casting with various freezing modes, and porosity and compressive strength of the as-fabricated ceramics were investigated. The results showed that the pore structure of ceramics prepared by homogeneous freezing was relatively intricate and inconsistent, and had a higher compressive strength. In contrast, the pore structure of ceramics fabricated using bidirectional freezing mode was more ordered and higher porosity was observed. Moreover, porous ceramics prepared by unidirectional freezing mode exhibited a typical gradient structure with increased pore size from tens of micrometers in the bottom to hundreds of micrometers in the top.  相似文献   

5.
《Ceramics International》2021,47(19):27386-27394
In order to control the pore characteristics and macroscopical performance of porous ceramics, roles of the freeze casting parameters are the key points. Herein, aligned dendritic porous SiC was fabricated by freeze casting of PCS-camphene solutions with different solid loading, freeze front velocity, temperature gradient, and freezing temperature. Influence of these parameters on the microstructure and compressive strength of porous SiC was investigated. With increasing the PCS content, freeze temperature, freeze front velocity or temperature gradient, degree of undercooling of the camphene was increased, resulting in the formation of smaller pore size, decreased porosity and increased compressive strength. Compared to variables of freeze temperature and temperature gradient, increased freeze front velocity was more efficiency in improving the compressive strength of porous SiC, owing to the formation of smaller pore size and longer secondary dendritic crystals. Promising micron-sized porous SiC with high porosity (79.93 vol%) and satisfactory strength (15.84 MPa) was achieved for 10% PCS-camphene solution under optimized freezing conditions.  相似文献   

6.
采用堇青石为主要原料,探讨了球磨时间、烧成温度和保温时间等工艺条件对多孔堇青石材料的孔径及其分布、气孔率、抗压强度和热膨胀特性等性能的影响规律。结果表明,在合适的工艺条件下,可获得平均孔径小于5um、膨胀系数低于1.60×10-6/℃、孔隙率和抗压强度分别大于50%和15Mpa的多孔堇青石基体材料。  相似文献   

7.
Porous yttria-stabilized zirconia (YSZ) ceramics with unidirectionally aligned pore channels were prepared by freezing YSZ/tert-butyl alcohol (TBA) slurry under different freezing temperatures of ?30, ?78 and ?196 °C, respectively. After removing the frozen TBA via freeze-drying in vacuum at ?50 °C, the green samples were sintered at 1450 °C for 2 h in air. The results showed that the freezing temperature significantly influenced microstructure and properties of the porous YSZ ceramics. Both microstructure observation and pore size distribution indicated that the pore channel size decreased significantly with decreasing freezing temperature, regardless of microstructure variations in the individual sample. Both porosity and room-temperature thermal conductivity of the porous YSZ ceramics varied under different freezing temperatures. Regardless of microstructure variations in the samples under different freezing temperatures, all samples had unidirectional pore channels with increasing pore channel size along the freezing direction. The fabricated samples had remarkably low thermal conductivities both in directions perpendicular and parallel to the channel direction, thus rendering them suitable for applications in thermal insulations.  相似文献   

8.
《Ceramics International》2021,47(22):31187-31193
In this study, porous calcium silicate (CS) ceramics with oriented arrangement of lamellar macropore structure were prepared by directional freeze casting method. The lamellar macropores were connected by the micropores on the pore wall, which had good pore interconnectivity. The effects of solid loading of the slurry, freezing temperature, sintering additive content, and sintering temperature on the microstructures and compressive strength of the synthesized porous materials were investigated systematically. The results showed that with the increase of solid loading (≤20 vol%) and sintering additive content, the sizes of lamellar pores and pore walls increased gradually, the open porosity decreased and the compressive strength increased. The sintering temperature had little effect on the pore size of the ceramics, but increasing the sintering temperature (≤1050 °C) promoted the densification of the pore wall, reduced the porosity, and improved the strength. The decrease of freezing temperature had little effect on porosity, but it reduced the size of lamellar pore and pore wall, so as to improve the strength. Finally, porous CS ceramics with lamellar macropores of about 300–600 μm and 2–10 μm micropores on the pore wall were obtained. The porous CS ceramics had high pore interconnectivity, an open porosity of 66.25% and a compressive strength of 5.47 MPa, which was expected to be used in bone tissue engineering.  相似文献   

9.
A novel approach to fabricate porous mullite ceramics with homogeneous pore size and high-strength using green non-toxic and cost-effective poly-γ-glutamic acid (γ-PGA) gelling system was reported for the first time. Effect of γ-PGA addition, additive amount and solid loading on rheological behavior of the slurries, and microstructure and properties of samples were investigated systematically. By optimizing the solid loading of mullite samples, we are able to get the sample with small pores (< 200 µm) dominating (93.3% of the total pores), and compressive strength of the sample reaches up to 26.62 MPa. In addition, the mullite ceramics exhibited high porosity of 75.7% with low thermal conductivity of 0.279 W/(m·K) at room temperature. This study not only provides a green and non-toxic gelling system but also offers porous mullite ceramics with low thermal conductivity and excellent mechanical strength as an energy-saving thermal insulation material.  相似文献   

10.
孔结构是混凝土微观结构中重要的组成部分,影响着混凝土的宏观性能,为了研究生活垃圾焚烧灰渣代替天然砂对混凝土孔结构和抗压强度的影响,通过核磁共振技术对生活垃圾焚烧灰渣代砂混凝土微观孔结构进行测试,分析了孔隙率和孔隙分布变化规律,并根据分形理论研究了孔隙分形特征,获得各孔径区间的分形维数与整体分形维数,并探讨了各孔径占比、孔隙率和分形维数与抗压强度之间的灰熵关联度。结果表明:随生活垃圾焚烧灰渣代砂率的增加,混凝土孔隙率增加,无害孔占比减小,抗压强度降低;分形维数随着生活垃圾焚烧灰渣代砂率的增加而减小,由于生活垃圾焚烧灰渣具有潜在的水硬性,随龄期的增长,分形维数呈增加趋势,同时孔隙结构得到了优化。灰熵关联度分析发现生活垃圾焚烧灰渣代砂混凝土整体分形维数和无害孔占比对抗压强度影响最大。  相似文献   

11.
In order to meet the demand for thermal insulation and sound absorption, fibrous porous mullite ceramics (FPMC) with high porosity and an interconnected pore structure were prepared, followed by a pore structure modification with in situ grown mullite whiskers on the three-dimensional framework of the FPMC. The resultant hierarchical material exhibited superior sound absorption performance in the low-to-medium frequency to most reported sound-absorbing materials, as well as a sufficient compressive strength of 1.26 MPa with low thermal conductivity of 0.117 W·m?1·K?1. Moreover, the effects of solid content and mullite whiskers on the microstructure and physical properties of the material were analyzed. The increase of solid content led to increased compressive strength and thermal conductivity and decreased frequency corresponding to the first sound absorption peak. The thermal conductivity and compressive strength of the material increased as the mullite whiskers grew, while the median pore size decreased.  相似文献   

12.
Porous ceramic scaffolds with a controlled “designer” pore structure have been prepared by the freeze/gel casting route using a TBA-based hydroxyapatite slurry system with 20–40 wt.% solid content. The products were characterized in terms of sintered microstructure, together with physical and mechanical properties. After sintering at 1050–1250 °C, the advantages of freeze casting and gel casting appeared in the pore structure and compressive strength of the ceramics, i.e., unidirectional aligned macro-pore channels developed by controlling the solidification direction of the TBA solvent used in the freeze casting together with small diameter (micron sized) isolated pores formed in the dense outer walls of the pore channels when processed by gel casting. The sintered porosity and pore size generally resulted in a high solid loading giving low porosity and small pore size, this leading to higher compressive strengths. The scaffolds obtained exhibited an average porosity and compressive strength in the range 41.9–79.3% and 35.1–2.7 MPa, respectively, depending on the processing conditions used.  相似文献   

13.
Porous mullite ceramics were prepared from an industrial grade mullite powder by foaming and starch consolidation. The viscosities of the original suspensions and the foamed ones with solid loading of 62.5 and 67.5 wt% were measured. After the steps of forming and drying, the green bodies were sintered under different temperatures from 1,200 to 1,600 °C for 2 h. The influence of solid loading of suspension and sintering temperature on the porosity and compressive strength was evaluated. The sintered mullite ceramics, with porosity from 86 to 73 vol% and corresponding compressive strength from 1 to 22 MPa, contained a multi-modal microstructure with large spherical pores and small pores on internal walls. Thermal conductivity measurement carried out by the transient plane source technique at room temperature resulted in values as low as 0.09 W/mK. In addition, the relationship between thermal conductivity and porosity was discussed in detail.  相似文献   

14.
我国西北地区日、年温差大,混凝土经历着温差产生的热疲劳劣化。保持环境湿度恒定,在20 ℃、30 ℃、40 ℃温差下开展两种强度等级的混凝土热疲劳试验,测定其抗压强度、劈裂抗拉强度等宏观性能变化规律;通过超声无损检测技术和压汞试验测定微观结构。结果表明:热疲劳劣化效应明显,随循环温差的增大和循环次数增加,混凝土强度下降明显,C40混凝土下降幅度大于C25混凝土,且劈裂抗拉强度较抗压强度对热疲劳作用更敏感;超声波速呈减小趋势,说明混凝土内部裂隙缺陷增多;同一循环温差下,混凝土的孔隙率、孔隙总体积、平均孔径、中值孔径、最可几孔径随温差循环次数增加而增大,孔隙总表面积减小,孔隙结构表现出粗化的特征且呈劣化的趋势,C40混凝土的孔隙率小于C25混凝土,但其孔隙率相对变化值更大,从微观层面揭示了混凝土在热疲劳作用下强度损伤的内在原因。  相似文献   

15.
高光斌  鄢文  李楠  张振燕 《硅酸盐通报》2017,36(4):1395-1400
以多孔球形莫来石为骨料,板状刚玉细粉、硅线石和粘土为基质,经1400 ℃、1500 ℃和1600 ℃保温3 h烧成,制备了四组轻质莫来石-刚玉耐火材料.采用X-射线衍射仪(XRD)和扫描电子显微镜(SEM)对试样的物相组成和显微结构进行表征,研究了烧成温度及硅线石含量(4%、6%、8%和10%)对试样常温物理性能和显微结构的影响.结果表明:(1)当硅线石含量不变时,随着烧成温度的升高,试样的显气孔率逐渐减小,体积密度逐渐增大,线收缩率逐渐增加,常温耐压强度先降低后升高;(2)当硅线石的含量从4%增加到8%时,经1400 ℃烧后,试样的显气孔率和体积密度变化不大,当硅线石含量超过8%时耐压强度显著下降;经1600 ℃烧后,随硅线石含量的增加,试样的体积密度减小,强度降低,线收缩率也由2.5%减小到1.5%;(3)当硅线石含量为6%、烧成温度为1400 ℃时,试样的线收缩率为0.86%,耐压强度为36.1 MPa,热导率为0.249 W/(m·K)(300 ℃),试样基质中气孔的d50为46.7 μm.  相似文献   

16.
陈晨  于景媛  李强 《硅酸盐通报》2021,40(1):241-251
本文采用添加造孔剂法制备孔隙呈现梯度分布的多孔载Ag羟基磷灰石(Ag-HA)陶瓷.研究了造孔剂分布、烧结温度和载Ag含量对梯度多孔Ag-HA陶瓷孔隙度的影响.分析了烧结产物的物相组成和微观形貌,测量了烧结后梯度多孔Ag-HA陶瓷的压缩性能和抗菌性能.研究结果表明:随着中间层造孔剂含量增加,梯度多孔Ag-HA陶瓷的孔隙度...  相似文献   

17.
Ultra low-density mullite foams are prepared by thermo-foaming followed by reaction sintering of alumina-silica powder dispersions in molten sucrose. The foaming & setting time, foam rise, sintering shrinkage, porosity, cell size and compressive strength are studied as a function of ceramic powder loading, foaming temperature and magnesium nitrate (blowing agent and setting agent) concentration. Phase pure mullite is produced by reaction sintering at 1600 °C. The mullite foams produced without magnesium nitrate have porous struts and cell walls due to improper densification. The magnesium nitrate drastically decreases the foaming & setting time and increases the foam rise and cell interconnectivity. The MgO produced from the magnesium nitrate assists the densification of the mullite as evidenced from the non-porous struts and cell walls at higher magnesium nitrate concentrations. The maximum porosity of 94.92 and 96.28 vol.% achieved without and with magnesium nitrate, respectively, is the highest reported for mullite foams.  相似文献   

18.
New gel system for preparing mullite porous ceramics by gel-casting freeze-drying was proposed, using pectin as gel source and alumina and silica as raw materials. Directional channels were formed due to sublimation of water during freeze-drying and decomposition of pectin during high temperature sintering to prepare porous mullite ceramic membranes. Effects of solid content on the properties of mullite ceramics in terms of phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal conductivity, pressure drop, and gas permeability were investigated. It was found that prepared porous mullite possessed high apparent porosity (56.04%–75.34%), low bulk density (.77–1.37 g/cm3), uniform pore size distribution, relatively high compressive strength (.61–3.03 MPa), low thermal conductivity (.224–.329 W/(m·K)), high gas permeability coefficient (1.11 × 10−10–4.73 × 10−11 m2), and gas permeance (2.18 × 10−2–9.32 × 10−3 mol⋅m−2⋅s−1⋅Pa−1). These properties make prepared lightweight mullite ceramic membranes promising for application in high temperature flue gas filtration. Proposed gel system is expected to provide a new route to prepare porous ceramics with high porosity and directional channels.  相似文献   

19.
以粉煤灰为原料,采用挤压成型和固态粒子烧结法制备管状粉煤灰基多孔陶瓷膜支撑体.采用TG-DSC技术对粉煤灰进行了热分析,采用SEM和XRD技术对样品的微观结构及物相组成进行了分析,并测定了样品的开孔率、抗压强度及空气渗透速率等性能指标.研究了烧结温度、保温时间和造孔剂添加量对支撑体性能的影响.结果表明:支撑体晶相组成主要为赤铁矿、红柱石和石英;烧结温度为1000 ℃,保温2 h,仅添加1%的粘结剂,不添加造孔剂的条件下制备出的管状支撑体综合性能最优,此时的支撑体孔隙率为44.95%,抗压强度为8.92 MPa,空气渗透速率为2.57×104 m3·h-1·m-2·MPa-1.  相似文献   

20.
Freeze casting is one of the emerging and novel manufacturing routes to fabricate porous scaffolds for various applications including orthopedic implants, drug delivery, energy storing devices etc. Thus, it becomes important to understand this process in a deeper sense. Present work was focused to study the effect/influence of basic parameters, particle sizes, and freezing conditions on the mechanical properties and microstructures of porous scaffold fabricated by freeze casting. β-tricalcium phosphate (β-TCP) and hydroxyapatite (HAp) powder with particle sizes of 10?μm and 20?nm were used. Prepared slurries were freeze casted at constant freezing temperature (5?°C) and constant freezing rate (1.86?°C/min) to study the effect of freezing conditions on mechanical and microstructural properties of the porous scaffold. It was observed that porous scaffold fabricated by nanoparticles has given better porosity (63.22–76.16%), than scaffold fabricated by microparticles (13–43.05%) at given solid loading of both freezing conditions. Although, the range of pore size of the scaffold fabricated by nanoparticles (CFR: 2.60–0.84?μm; CFT: 1.66–0.46?μm) was lower than that of scaffold fabricated by microparticles (CFR: 9.45–4.83?μm; CFT: 4.72–2.84?μm). The compressive strength of scaffolds prepared by nanoparticles was in the range of trabecular bone. Moreover, the results of present work will pave the way for the fabrication of porous scaffold with desired pore size and porosity for various implants, energy, and drug delivery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号