首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excitotoxicity elicited by overactivation of N-methyl-D-aspartate receptors is a well-known characteristic of quinolinic acid-induced neurotoxicity. However, since many experimental evidences suggest that the actions of quinolinic acid also involve reactive oxygen species formation and oxidative stress as major features of its pattern of toxicity, the use of antioxidants as experimental tools against the deleterious effects evoked by this neurotoxin becomes more relevant. In this work, we investigated the effect of a garlic-derived compound and well-characterized free radical scavenger, S-allylcysteine, on quinolinic acid-induced striatal neurotoxicity and oxidative damage. For this purpose, rats were administered S-allylcysteine (150, 300 or 450 mg/kg, i.p.) 30 min before a single striatal infusion of 1 microl of quinolinic acid (240 nmol). The lower dose (150 mg/kg) of S-allylcysteine resulted effective to prevent only the quinolinate-induced lipid peroxidation (P < 0.05), whereas the systemic administration of 300 mg/kg of this compound to rats decreased effectively the quinolinic acid-induced oxidative injury measured as striatal reactive oxygen species formation (P < 0.01) and lipid peroxidation (P < 0.05). S-Allylcysteine (300 mg/kg) also prevented the striatal decrease of copper/zinc-superoxide dismutase activity (P < 0.05) produced by quinolinate. In addition, S-allylcysteine, at the same dose tested, was able to reduce the quinolinic acid-induced neurotoxicity evaluated as circling behavior (P < 0.01) and striatal morphologic alterations. In summary, S-allylcysteine ameliorates the in vivo quinolinate striatal toxicity by a mechanism related to its ability to: (a) scavenge free radicals; (b) decrease oxidative stress; and (c) preserve the striatal activity of Cu,Zn-superoxide dismutase (Cu,Zn-SOD). This antioxidant effect seems to be responsible for the preservation of the morphological and functional integrity of the striatum.  相似文献   

2.
Curcumin, a major active component of Curcuma longa, possesses antioxidant and neuroprotective activities. The present study explores the mechanisms underlying the neuroprotective effect of curcumin against corticosterone and its relation to 5-hydroxy tryptamine (5-HT) receptors. Exposure of cortical neurons to corticosterone results in decreased mRNA levels for three 5-HT receptor subtypes, 5-HT(1A), 5-HT(2A) and 5-HT(4), but 5-HT(1B,) 5-HT(2B), 5-HT(2C), 5-HT(6) and 5-HT(7) receptors remain unchanged. Pre-treatment with curcumin reversed this effect on mRNA for the 5-HT(1A) and 5-HT(4) receptors, but not for the 5-HT(2A) receptor. Moreover, curcumin exerted a neuroprotective effect against corticosterone-induced neuronal death. This observed effect of curcumin was partially blocked by either 5-HT(1A) receptor antagonist p-MPPI or 5-HT(4) receptor antagonist RS 39604 alone; whereas, the simultaneous application of both antagonists completely reversed the effect. Curcumin was also found to regulate corticosterone-induced morphological changes such as increases in soma size, dendritic branching and dendritic spine density, as well as elevate synaptophysin expression in cortical neurons. p-MPPI and RS 39604 reversed the effect of curcumin-induced change in neuronal morphology and synaptophysin expression of corticosterone-treated neurons. In addition, an increase in cyclic adenosine monophosphate (cAMP) level was observed after curcumin treatment, which was further prevented by RS 39604, but not by p-MPPI. However, curcumin-induced elevation in protein kinase A activity and phosphorylation of cAMP response element-binding protein levels were inhibited by both p-MPPI and RS 39604. These findings suggest that the neuroprotection and modulation of neuroplasticity exhibited by curcumin might be mediated, at least in part, via the 5-HT receptor-cAMP-PKA-CREB signal pathway.  相似文献   

3.
Quinolinic acid (QUIN), a well known excitotoxin that produces a pharmacological model of Huntington's disease in rats and primates, has been shown to evoke degenerative events in nerve tissue via NMDA receptor (NMDAr) overactivation and oxidative stress. In this study, the antioxidant selenium (as sodium selenite) was tested against different markers of QUIN-induced neurotoxicity under both in vitro and in vivo conditions. In the in vitro experiments, a concentration-dependent effect of selenium was evaluated on the regional peroxidative action of QUIN as an index of oxidative toxicity in rat brain synaptosomes. In the in vivo experiments, selenium (0.625 mg per kg per day, i.p.) was administered to rats for 5 days, and 2 h later animals received a single unilateral striatal injection of QUIN (240 nmol/ micro L). Rats were killed 2 h after the induction of lesions with QUIN to measure lipid peroxidation and glutathione peroxidase (GPx) activity in striatal tissue. In other groups, the rotation behavior, GABA content, morphologic alterations, and the corresponding ratio of neuronal damage were all evaluated as additional markers of QUIN-induced striatal toxicity 7 days after the intrastriatal injection of QUIN. Selenium decreased the peroxidative action of QUIN in synaptosomes both from whole rat brain and from the striatum and hippocampus, but not in the cortex. A protective concentration-dependent effect of selenium was observed in QUIN-exposed synaptosomes from whole brain and hippocampus. Selenium pre-treatment decreased the in vivo lipid peroxidation and increased the GPx activity in QUIN-treated rats. Selenium also significantly attenuated the QUIN-induced circling behavior, the striatal GABA depletion, the ratio of neuronal damage, and partially prevented the morphologic alterations in rats. These data suggest that major features of QUIN-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that selenium partially protects against QUIN toxicity.  相似文献   

4.
5.
Reactive oxygen species and oxidative stress are involved in quinolinic acid (QUIN)-induced neurotoxicity. QUIN, a N-methyl-D-aspartate receptor (NMDAr) agonist and prooxidant molecule, produces NMDAr overactivation, excitotoxic events, and direct reactive oxygen species formation. Copper is an essential metal exhibiting both modulatory effects on neuronal excitatory activity and antioxidant properties. To investigate whether this metal is able to counteract the neurotoxic and oxidative actions of QUIN, we administered copper (as CuSO(4)) intraperitoneally to rats (2.5, 5.0, 7.5, and 10.0 mg/kg) 30 min before the striatal infusion of 1 microliter of QUIN (240 nmol). A 5.0 mg/kg CuSO(4) dose significantly increased the copper content in the striatum, reduced the neurotoxicity measured both as circling behavior and striatal gamma-aminobutyric acid (GABA) depletion, and blocked the oxidative injury evaluated as striatal lipid peroxidation (LP). In addition, copper reduced the QUIN-induced decreased striatal activity of Cu,Zn-dependent superoxide dismutase, and increased the ferroxidase activity of ceruloplasmin in cerebrospinal fluid from QUIN-treated rats. However, copper also produced significant increases of plasma lactate dehydrogenase activity and mortality at the highest doses employed (7.5 and 10.0 mg/kg). These results show that at low doses, copper exerts a protective effect on in vivo QUIN neurotoxicity.  相似文献   

6.
L-2-Chloropropionic acid is selectively toxic to the cerebellum in rats; the granule cell necrosis observed within 48 h can be prevented by prior administration of MK-801. Short-term treatment (2 h) with L-2-chloropropionic acid has also been shown to activate the mitochondrial pyruvate dehydrogenase complex in fasted adult rats. This study aimed to investigate the effect of prior exposure to MK-801 on the biochemical and neurotoxicological effects of L-2-chloropropionic acid. Extracts were prepared from the forebrain and cerebellum of animals that had been treated with L-2-chloropropionic acid, with and without prior treatment with MK-801, and were analysed using magnetic resonance spectroscopy and amino acid analysis. Glucose metabolism was studied by monitoring the metabolism of [1-(13)C]-glucose using GC/MS. L-2-Chloropropionic acid caused increased glucose metabolism in both brain regions 6 h after administration, confirming activation of the pyruvate dehydrogenase complex, which was not prevented by MK-801. After 48 h an increase in lactate and a decrease in N-acetylaspartate was observed only in the cerebellum, whereas phosphocreatine and ATP decreased in both tissues. MK-801 prevented the changes in lactate and N:-acetylaspartate, but not those on the energy state. These studies suggest that L-2-chloropropionic acid-induced neurotoxicity is only partly mediated by the NMDA subtype of glutamate receptor.  相似文献   

7.
To study the effects of curcumin on human retinal pigment epithelial (RPE) cells exposed to high glucose (HG) insult, we performed in vitro studies on RPE cells cultured both in normal and HG conditions to assess the effects of curcumin on the cell viability, nuclear factor erythroid 2-related factor 2 (Nrf2) expression, HO-1 activity, and ERK1/2 expression. RPE cells exposed to HG insult were treated with curcumin. The cell viability, apoptosis, HO-1 activity, ERK, and Nrf2 expression were evaluated. The data indicated that treatment with curcumin caused a significant decrease in terms of apoptosis. Further, curcumin was able to induce HO-1 expression via Nrf2 activation and counteracts the damage elicited by HG. The present study demonstrated that curcumin provides protection against HG-induced damage in RPE cells through the activation of Nrf2/HO-1 signaling that involves the ERK pathway, suggesting that curcumin may have therapeutic value in the treatment of diabetic retinopathy.  相似文献   

8.
Neurotoxicity induced by different substituted amphetamines has been associated with the exhaustion of intracellular energy stores. Accordingly, we examined the influence of 2-deoxy-D-glucose (2-DG), a competitive inhibitor of glucose uptake and metabolism, and nicotinamide, an agent that improves energy metabolism, on 3, 4-methylenedioxymethamphetamine (MDMA)-induced 5-hydroxytryptamine (5-HT; serotonin) deficits. Administration of MDMA (15 mg/kg i.p.) produced a significant hyperthermia, whereas 2-DG caused a profound hypothermia that lasted throughout the experiment. When MDMA was given to 2-DG-treated rats, an immediate but transient hyperthermia occurred and was followed by a return to hypothermia. 2-DG had no effect on 5-HT concentrations in the frontal cortex, hippocampus, and striatum but prevented the neurotoxicity induced by MDMA. When rats were injected with 2-DG/MDMA and were warmed to prevent hypothermia, the protection afforded by 2-DG was abolished. Nicotinamide had no effect on body temperature of the rats, and the hyperthermia induced by the nicotinamide/MDMA treatment was similar to that of the saline/MDMA-treated rats. However, the long-term 5-HT deficits induced by MDMA were potentiated by nicotinamide in all the brain regions examined. Finally, no change on ATP concentrations in the frontal cortex, hippocampus, and striatum was observed up to 3 h after a single dose of MDMA. These results suggest that an altered energy metabolism is not the main cause of the neurotoxic effects induced by MDMA.  相似文献   

9.
Oxidative stress and inflammation are implicated in neurodegenerative diseases including Parkinson's disease (PD) and Huntington's disease (HD). Celastrol is a potent anti-inflammatory and antioxidant compound extracted from a perennial creeping plant belonging to the Celastraceae family. Celastrol is known to prevent the production of proinflammatory cytokines, inducible nitric oxide synthase and lipid peroxidation. Mice were treated with celastrol before and after injections of MPTP, a dopaminergic neurotoxin, which produces a model of PD. A 48% loss of dopaminergic neurons induced by MPTP in the substantia nigra pars compacta was significantly attenuated by celastrol treatment. Moreover, celastrol treatment significantly reduced the depletion in dopamine concentration induced by MPTP. Similarly, celastrol significantly decreased the striatal lesion volume induced by 3-nitropropionic acid, a neurotoxin used to model HD in rats. Celastrol induced heat shock protein 70 within dopaminergic neurons and decreased tumor necrosis factor-alpha and nuclear factor kappa B immunostainings as well as astrogliosis. Celastrol is therefore a promising neuroprotective agent for the treatment of PD and HD.  相似文献   

10.
11.
The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has been proposed to be a candidate for enhanced clearance of toxic Aβ amyloid. In this study we have studied the potency of feeding curcumin as a drug candidate to alleviate Aβ toxicity in transgenic Drosophila. The longevity as well as the locomotor activity of five different AD model genotypes, measured relative to a control line, showed up to 75% improved lifespan and activity for curcumin fed flies. In contrast to the majority of studies of curcumin effects on amyloid we did not observe any decrease in the amount of Aβ deposition following curcumin treatment. Conformation-dependent spectra from p-FTAA, a luminescent conjugated oligothiophene bound to Aβ deposits in different Drosophila genotypes over time, indicated accelerated pre-fibrillar to fibril conversion of Aβ(1-42) in curcumin treated flies. This finding was supported by in vitro fibrillation assays of recombinant Aβ(1-42). Our study shows that curcumin promotes amyloid fibril conversion by reducing the pre-fibrillar/oligomeric species of Aβ, resulting in a reduced neurotoxicity in Drosophila.  相似文献   

12.
The concentration of the endogenous neurotoxin quinolinic acid (QA) is increased in the central nervous system of mice with herpes simplex encephalitis. We have previously shown that the antiherpetic agent acyclovir (AC) has the ability to reduce QA-induced neuronal damage in rat brain, by attenuating lipid peroxidation. The mechanism by which QA induces lipid peroxidation includes the enhancement of the iron (Fe)-mediated Fenton reaction and the generation of free radicals, such as the superoxide anion (O(2)(-)). Thus, the present study determined whether AC has the ability to reduce Fe(2+)-induced lipid peroxidation, O(2)(-) generation and QA-induced superoxide anion generation, and to bind free Fe. O(2)(-) and Fe(2+) are also cofactors of the enzymes, indoleamine-2,3-dioxygenase (IDO) and 3-hydroxyanthranilate-3,4-dioxygenase (3-HAO) respectively. These enzymes catalyse steps in the biosynthesis of QA; thus, the effect of AC on their activity was also investigated. AC significantly attenuates Fe(2+)-induced lipid peroxidation and O(2)(-) generation. AC reduces O(2)(-) generation in the presence of QA and strongly binds Fe(2+) and Fe(3+). It also reduces the activity of both IDO and 3-HAO, which could be attributed to the superoxide anion scavenging and iron binding properties, respectively, of this drug.  相似文献   

13.
Maintaining tight junction (TJ) integrity in the intestine is critical for nutrient absorption, host defense, and host immunity. While leptin secreted from adipose tissue is associated with obesity and obesity-related intestinal inflammation, the role of luminal leptin in intestinal TJ function is elusive. Here, we examined the role of leptin in intestinal TJ function in Caco-2 BBe cells and further explored the function of curcumin (CCM) in leptin-induced TJ dysfunction. Apical leptin, but not basolateral leptin, treatment at a concentration of 100 ng/ml deteriorated TJ function in Caco-2 BBe cells. Leptin-impaired TJ alteration was resulted from induction of leptin receptor-dependent JAK2/STAT3 signaling pathway and its-related PI3K/Akt/ERK1/2 signaling pathways. Apical leptin also lowered the expression levels of genes encoding TJ-associated proteins such as zonula occludens-3, claudin-5, and occludin, and elevated expression of pro-inflammatory genes such as IL-6 and TNF-α. Leptin-impaired TJ junction in Caco-2 BBe cells was blunted by a 30-min CCM pretreatment through inhibition of leptin receptor-dependent signaling pathway, and its-associated induction of expression of genes encoding TJ-associated proteins and pro-inflammatory cytokines. Our results elucidate a novel function of luminal leptin in intestinal TJ dysfunction, and further identify CCM as an effective dietary compound that prevents leptin-impaired TJ function in intestinal cells.  相似文献   

14.
Oxidative damage plays a critical role in many diseases of the central nervous system. This study was conducted to determine the molecular mechanisms involved in the putative anti-oxidative effects of curcumin against experimental stroke. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular expression of NAD(P)H: quinone oxidoreductase1 (NQO1) induced by OGD was counteracted by curcumin post-treatment, which paralleled attenuated cell injury. The reduction of phosphorylation Akt induced by OGD was restored by curcumin. Consequently, NQO1 expression and the binding activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) to antioxidant response element (ARE) were increased. LY294002 blocked the increase in phospho-Akt evoked by curcumin and abolished the associated protective effect. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 60 minutes. Curcumin administration significantly reduced infarct size. Curcumin also markedly reduced oxidative stress levels in middle cerebral artery occlusion (MCAO) rats; hence, these effects were all suppressed by LY294002. Taken together, these findings provide evidence that curcumin protects neurons against ischemic injury, and this neuroprotective effect involves the Akt/Nrf2 pathway. In addition, Nrf2 is involved in the neuroprotective effects of curcumin against oxidative damage.  相似文献   

15.
Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of cellular antioxidant defence. We previously showed that SFN prevented Ang II-induced cardiac damage via activation of Nrf2. However, the underlying mechanism of SFN’s persistent cardiac protection remains unclear. This study aimed to explore the potential of SFN in activating cardiac Nrf2 through epigenetic mechanisms. Wild-type mice were injected subcutaneously with Ang II, with or without SFN. Administration of chronic Ang II-induced cardiac inflammatory factor expression, oxidative damage, fibrosis and cardiac remodelling and dysfunction, all of which were effectively improved by SFN treatment, coupled with an up-regulation of Nrf2 and downstream genes. Bisulfite genome sequencing and chromatin immunoprecipitation (ChIP) were performed to detect the methylation level of the first 15 CpGs and histone H3 acetylation (Ac-H3) status in the Nrf2 promoter region, respectively. The results showed that SFN reduced Ang II-induced CpG hypermethylation and promoted Ac-H3 accumulation in the Nrf2 promoter region, accompanied by the inhibition of global DNMT and HDAC activity, and a decreased protein expression of key DNMT and HDAC enzymes. Taken together, SFN exerts its cardioprotective effect through epigenetic modification of Nrf2, which may partially contribute to long-term activation of cardiac Nrf2.  相似文献   

16.
Patients with advanced cancer exhibit multifaceted defects in their immune capacity, which are likely to contribute to an increased susceptibility to infections and disease progression. We demonstrated earlier that curcumin inhibits tumor growth and prevents immune cell death in tumor-bearing hosts. Here we report that tumor-induced immunodepletion involves apoptosis of thymic CD4+/CD8+ single/double positive cells as well as loss of circulating CD4+/CD8+ T cells. Administration of curcumin to tumor-bearing animals resulted in restoration of progenitor, effecter, and circulating T cells. In fact, tumor burden decreased the expression level of the pro-proliferative protein Bcl-2 while increasing the pro-apoptotic protein Bax in T cells. Curcumin down-regulated the Bax level while augmenting Bcl-2 expression in these cells, thereby protecting the immunocytes from tumor-induced apoptosis. A search for the upstream mechanism revealed down-regulation of the common cytokine receptor gamma chain (gammac) expression in T cells by tumor-secreted prostaglandin E2. As a result, Jak-3 and Stat-5a phosphorylation and to a lesser extent Stat-5b phosphorylation were also decreased in T cells. These entire phenomena could be reverted back by curcumin, indicating that this phytochemical restored the cytokine-dependent Jak-3/Stat-5a signaling pathway in T cells of tumor bearers. Overexpressed Stat-5a/constitutively active Stat-5a1*6 but not Stat-5b could efficiently elevate Bcl-2 levels and protect T cells from tumor-induced death, whereas C-terminal truncated Stat-5a713 overexpression failed to do so, indicating the importance of Stat-5a signaling in T cell survival. Thus, these results raise the possibility of inclusion of curcumin in successful therapeutic regimens against cancer.  相似文献   

17.
The inflammatory reaction plays an important role in the pathogenesis of the neurodegenerative disorders. tert-butylhydroquinone (tBHQ) exhibits a wide range of pharmacological activities including anti-oxidative and anti-inflammatory action. In this study, we tried to elucidate possible effects of tBHQ on lipopolysaccharide (LPS)-induced inflammatory reaction and its underlying mechanism in neuron-like PC12 cells. tBHQ inhibited LPS-induced generation of reactive oxygen species (ROS) and elevation of intracellular calcium level. It also inhibited LPS-induced cyclooxygenase 2 (COX-2), TNF-α, nuclear factor KappaB (NF-kB), and caspase-3 expression in a dose-dependent manner while stabilizing nuclear factor-erythroid 2 p45-related factor 2. Moreover, the phosphorylations of p38, ERK1/2, and JNK were suppressed by tBHQ. These results suggest that the anti-inflammatory properties of tBHQ might result from inhibition of COX-2 and TNF-α expression, inhibition of NF-kB nuclear translocation along with suppression of MAP kinases (p38, ERK1/2, and JNK) phosphorylation in PC12 cells, so may be a useful agent for prevention of inflammatory diseases.  相似文献   

18.
19.
Dopamine-deficient mice (DA-/- ), lacking tyrosine hydroxylase (TH) in dopaminergic neurons, become hypoactive and aphagic and die by 4 weeks of age. They are rescued by daily treatment with L-3,4-dihydroxyphenylalanine (L-DOPA); each dose restores dopamine (DA) and feeding for less than 24 hr. Recombinant adeno-associated viruses expressing human TH or GTP cyclohydrolase 1 (GTPCH1) were injected into the striatum of DA-/- mice. Bilateral coinjection of both viruses restored feeding behavior for several months. However, locomotor activity and coordination were partially improved. A virus expressing only TH was less effective, and one expressing GTPCH1 alone was ineffective. TH immunoreactivity and DA were detected in the ventral striatum and adjacent posterior regions of rescued mice, suggesting that these regions mediate a critical DA-dependent aspect of feeding behavior.  相似文献   

20.
In neurodegenerative diseases, progressive oxidative stress is a major event that precedes neuronal death. Oxidative stress is characterized by an imbalance between oxidants and antioxidants. This imbalance induced oxidative molecular and cell damage, reducing cellular viability. 3-Nitropropionic acid (3NP) causes oxidative stress and other molecular and cellular changes similar to those observed in neurons of patients with Huntington’s disease. Since carvedilol and melatonin act as free-radical scavengers, this study examined the effect of carvedilol (10?5 M) and melatonin (10?5 M) on oxidative and cell damage induced by 3NP in N1E-115 neuroblastoma cells. Carvedilol and melatonin prevented the increases in lipid peroxidation and total LDH activity, as well as the depletion of reduced glutathione (GSH) and the reduction of antioxidative enzymes activities in N1E-115 cells incubated with 100 mM 3NP. All these carvedilol and melatonin effects were more intense when the drugs were added before rather than after inducing the damage by 3NP. These results also provided evidence supporting the hypothesis that carvedilol and melatonin can be useful for treating neurodegenerative diseases, such as Huntington’s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号