首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
用热模拟试验方法对压力罐用铝材(简称"铝原块")进行热压缩变形,探讨了熔体处理和变形条件对该材料高温流变应力行为的影响.结果表明:经不同熔体处理的铝原块均存在稳态流变特征;应变速率达10.00s-1时,流变曲线上均出现峰值应力,即该材料出现了动态再结晶;稳态变形阶段的流变应力与应变速率或变形温度分别满足双曲正弦函数关系和Arrhenius关系;与未处理的、常规处理的铝原块相比,经高效熔体处理的铝原块的真应力值及进入稳态阶段所对应的真应变值均较小,热变形激活能也有较明显的降低;此外还求出经高效熔体处理的铝原块的高温流变应力方程.  相似文献   

2.
3003铝合金热变形行为   总被引:2,自引:0,他引:2  
采用不同熔体处理工艺获得3种不同冶金质量的3003铝合金,通过Gleeble-1500热模拟试验机对3003铝合金进行变形温度为300℃~500℃,应变速率为0.01s-1~10s-1高温等温压缩实验。结果表明,3003铝合金具有正的应变速率敏感性,热变形激活能Q与含杂量H呈线性关系,经高效综合处理的3003铝合金热变形激活能最低为174.62kJ.mol-1,有利于材料热塑性变形。采用加工硬化率计算不同熔体处理的3003铝合金的临界应变值,获得了经不同熔体处理的3003铝合金发生动态再结晶的临界条件。  相似文献   

3.
1 Introduction The sheets (especially can body sheet) used for easy-open can adopted in China still rely greatly on import at present[1]. Only some kinds of domestic-made sheets reach the quality standard, so the sheets can only support for lids making in…  相似文献   

4.
经不同熔体处理的易拉罐用铝材的热压缩变形组织   总被引:1,自引:0,他引:1  
采用动态热/力模拟实验技术对经不同熔体处理的易拉罐用铝材进行高温压缩变形实验,并用光学显微镜、透射电镜分析探讨其热变形组织特征。结果表明:冶金质量影响易拉罐用铝材的动态再结晶组织特征,在未处理或常规熔体处理状态下存在枝晶网胞结构,晶粒组织不均匀;高效熔体处理使易拉罐用铝材在较低的温度下即可通过亚晶合并方式发生动态再结晶,并在变形温度573~673 K、应变速率0.1~1.0 s-1、变形量约0.7的较宽的热变形工艺条件下可获得细小且分布较均匀的再结晶晶粒组织。  相似文献   

5.
3003 Al alloy samples with various metallurgical qualities were obtained by various melt-treatment methods and were deformed by isothermal compression in the deformation temperature range of 300°C to 500°C at strain rates between 0.0l and 10.0 s−1 with a Gleeble-1500 thermal simulator. The results show that there is a close relationship between melt-treatment and subsequent thermal deformation. The hot deformation activation energy (Q) bears a linear relationship with the inclusion content (H) of 3003 Al alloy prepared by various melt-treatment methods, that is Q = 35.62 H + 171.58. The activation energy of the 3003 Al alloy prepared by the highly efficient melt-treatment is the lowest (174.62 kJ·mol−1), which is beneficial to the material hot plastic deformation. The critical strain of the 3003 Al alloy prepared by various melt-treatment methods is investigated through the work hardening rate. Finally, the critical conditions of the investigated alloy were determined to predict the occurrence of dynamic recrystallization.  相似文献   

6.
采用Gleeble-1500D热模拟机研究了7055铝合金在应变速率为0.01、0.1和1s-1、变形温度为300~450℃,最大真应变为0.7条件下的高温塑性变形行为,分析了合金流变应力与应变速率、变形温度之间的关系,计算了合金高温塑性变形时的变形激活能,并观察了合金变形过程中显微组织变化情况。结果表明:合金在热变形过程中流变应力随温度的升高而减小,随应变速率的增加而增大,7055铝合金的高温塑性变形行为可以用包含Zener-Hollomon参数的流变应力方程进行描述。该合金在实验条件范围内热变形以动态回复为主要软化机制并伴随极少量的再结晶发生。  相似文献   

7.
The mechanical properties of polycrystalline Cu (purity 99.95%) prepared by severe plastic deformation were studied at low homologous temperatures from 0.5 K to room temperature. Material with three different microstructures was prepared by annealing of ultrafine-grained Cu. At cryogenic temperatures (0.5 and 4.2 K) the material exhibited an inverse temperature dependence of the yield stress and unstable plastic deformation accompanied by serrations on the stress–strain curves. These low-temperature anomalies were accentuated with grain refinement. At cryogenic temperatures, enhanced ductility was observed and the Hall–Petch relation was found to hold. Microhardness and yield stress were much more temperature dependent in fine-grained than in coarse-grained material, and there is a correlation between the flow stress at a fixed strain and the microhardness. This study has demonstrated that, apart from enhanced discontinuous plastic flow, severe plastic deformation improves the strength of copper at cryogenic temperatures without sacrificing ductility.  相似文献   

8.
The flow stress behavior of Al-0.3Er have been studied by hot compression tests on a Gleeble-1500D thermal simulator in the temperature range of 300-450 ℃ and strain rate range of 0.001-10 s-1. The results show that the flow stress is controlled by strain rate and deformation temperature. The flow stress decreases with deformation temperature increasing and increases with strain rate increasing. The constitutive relation of Al-0.3Er under high temperature conditions can be described by hyperbolic-sine-type equation. The processing maps based on the dynamic material model (DMM) of Al-0.3Er alloy has been also established and analyzed preliminarily. The highest efficiency of power dissipation is at the temperature range of 415-450 ℃ and in the strain rate range of 0.001-0.076 s-1 and 0.347-0.390 s-1, which is optimum working domain.  相似文献   

9.
Our previous results have shown that comprehensive mechanical properties of titanium alloys can be effectively improved by addition of Fe[1]. We systematically investigate hot deformation behaviors of Ti-6Al-4V-0.35Fe in this study, which is significant to improve plastic deformation ability of titanium alloys. In experiment, we use a Gleeble 3800 thermo-mechanical simulator to obtain the relationship between thermomechanical parameters and flow stress in a range of temperatures (800-950 °C) and strain rates (0.001-10 s-1). The single-peak profiles of the flow curves indicate that dynamic recrystallization (DRX) mechanism dominates the deformation. TEM analysis indicate that the grain size in DRX changes under different deformation temperatures, and finer grains are formed at relatively lower temperature due to the dynamic globularization. The dislocation walls are formed in subgrain boundaries due to dislocation slipping-climbing. The Avrami-type DRX model and the strain compensated multivariable regression model have been applied to fit the experimental stress-strain data during hot deformation. A comparative study between these two types of constitutive models is conducted to represent the flow behavior. It is found that both models have good accuracy in predicting the flow stress of Ti-6Al-4V-0.35Fe alloy. A processing map based on dynamic material model (DMM) at the strain of 0.8 (steady-state flow stage) has been established to identify the flow instability regions and stability regions. The strain rate range of stability region is 0.001-0.6s-1 which has been expanded compared to the range of 0.0003-0.1s-1 of Ti-6Al-4V. Optimal hot working parameters are confirmed to be 920-950 °C and 0.001-0.005 s-1, and nearly complete DRX has taken place. Our results indicate that hot working property of Fe-microalloyed Ti-6Al-4V is better than that of Ti-6Al-4V alloy in 800-950 °C temperature scale, and processing cost has been decreased.  相似文献   

10.
1.~nonNumericalmodelingofindustrialplasticdeformationprocesseshasbecomeafieldofveryactiveresearchinthepastfewyears.ForthefullpotentialeXPloitingofthismethod,itisessentialtogetthepreciseknowledgeofconstitutivebehaviorofthematerial.Severalpapershavedevotedtotheestablishingofgeneralconstitutiveeqllationsfordescribingtheflowstressofthematerialasafunctionoftheprocessparameterssuchasstrain,strainrate,andtemperature['--7).Theseparametersareoftencalculatedforpeakstressvalueonly,becausemanymodelsassum…  相似文献   

11.
Hot compression tests of 8009Al alloy reinforced with 15% SiC particles (8009Al/15%SiCp composites) prepared by powder metallurgy (direct hot extrusion methods) were performed on Gleeble-3500 system in the temperature range of 400-550 °C and strain rate range of 0.001-1 s?1. The processing map based on the dynamic material model was established to evaluate the flow instability regime and optimize processing parameters; the associated microstructural changes were studied by the observations of optical metallographic and scanning electron microscopy. The results showed that the flow stress increased initially and reached a plateau after peak stress value with increasing strain. The peak stress increased as the strain rate increased and deformation temperature decreased. The optimum parameters were identified to be deformation temperature range of 500-550 °C and strain rate range of 0.001-0.02 s?1 by combining the processing map with microstructural observation.  相似文献   

12.
在Gleeble-1500热模拟机上对120°模具室温Bc方式ECAP变形8道次制备的平均晶粒尺寸约为200 nm的工业纯钛进行等温变速压缩实验,研究超细晶工业纯钛在变形温度为298~673 K和应变速率为1×10-4~1×100s-1条件下的流变应力行为。结果表明:变形温度和应变速率均对流变应力具有显著影响,峰值应力随变形温度的升高和应变速率的降低而降低;流变应力在变形初期随应变的增加而增大,出现峰值后逐渐趋于平稳,呈现稳态流变特征。采用双曲正弦模型确定了超细晶工业纯钛的变形激活能Q=104.46 kJ/mol和应力指数n=23,建立了相应的变形本构关系。  相似文献   

13.
The hot forming behavior, failure mechanism, and microstructure evolution of in-situ TiB2 particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300–450 °C and strain rates of 0.001-1 s?1. The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate, and dimple rupture of the matrix at high temperature and low strain rate. Full dynamic recrystallization, which improves the composite formability, occurs under conditions of high temperature (450 °C) and low strain rate (0.001 s?1); the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite. Based on the flow stress curves, a constitutive model describing the relationship of the flow stress, true strain, strain rate and temperature was proposed. Furthermore, the processing maps based on both the dynamic material modeling (DMM) and modified DMM (MDMM) were established to analyze flow instability domain of the composite and optimize hot forming processing parameters. The optimum processing domain was determined at temperatures of 425-450 °C and strain rates of 0.001-0.01 s?1, in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.  相似文献   

14.
通过高温拉伸及胀形实验,研究了Fe78Si9B13非晶合金的塑性变形性能。高温拉伸的温度范围为430℃~530℃,初始应变速率为1.67×10-4s-1~1.67×10-3s-1。利用X射线衍射(XRD)和扫描电镜(SEM)对高温变形后的微观组织进行了分析。高温拉伸的延伸率随温度的升高先增大后减小,450℃时达到最大;在450℃,初始应变速率为8.33×10-4s-1时延伸率为40%。在450℃胀形得到半径为5mm、高4mm的近半球试件,显示了Fe78Si9B13非晶合金具有良好的高温变形性能。高温塑性变形过程中伴随着非晶的晶化,使塑性流动应力增大,影响了Fe78Si9B13非晶合金的高温变形性能。  相似文献   

15.
The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator. The relationship between the true stress and the true strain at different temperatures and strain rates was studied with the deformation degree of 70%. The microstructures during the deformation process were characterized. The deformation mechanism and thixo-forming properties of the semi-solid alloys were analyzed. The results show that the homogeneous and non-dendrite microstructures of semi-solid 6061Al alloy manufactured by near-liquidus casting technology could be transformed into semi-solid state with the microstructure suitable for thixo-forming which are composed of near-spherical grains and liquid phase with eutectic composition through reheating process. The deformation temperature and strain rate affect the peak stress significantly rather than steady flow stress. The resistance to deformation in semi-solid state decreases with the increase of the deformation temperature and decrease of the strain rate. At steady thixotropic deformation stage, the thixotropic property is uniform, and the main deformation mechanism is the rotating or sliding between the solid particles and the plastic deformation of the solid particles.  相似文献   

16.
利用热物理模拟机Gleeble1500进行多组圆柱试样的热物理模拟压缩试验,试验温度为250~450℃,应变速率为0.01~10 s-1.结果表明,7075铝合金热压缩温度在300、350、400和450℃时流变行为呈近稳态,而在250℃时呈非稳态.应用多元线性同归方法分析计算了7075合金唯象本构模型所需的一组系数及热变形的激活能.获得了能够较精确表示7075合金材料的流动应力与温度、应变速率和应变之间关系的唯象本构模型,为塑性成形模拟提供了所需的基本模型.  相似文献   

17.
7A52铝合金热加工过程中高温压缩变形行为   总被引:9,自引:0,他引:9  
采用圆柱试样在Gleeble-1500热模拟机上进行高温压缩变形模拟实验,研究了7A52铝合金在高温塑性变形过程中流变行为。实验结果表明,合金高温压缩变形时的流变应力随变形温度的升高而减小,随变形速率的提高而增大。热变形条件下流变应力σ、应变速率ε.和变形温度T之间满足一定的关系式。研究指出,合金适宜的热加工温度为400℃~420℃。  相似文献   

18.
采用Gleeble-1500研究了在应变速率为10-3s-1~10-1s-1和变形温度为1000℃~1200℃条件下,真空自耗方法制备180mm直径TiAl合金铸锭的热变形行为,并建立了高温变形的本构方程。结果表明,合金变形的流变应力对温度和应变速率敏感,铸态合金的热变形激活能为335.5kJ/mol,所建立的变形本构方程,可为制定工业尺寸TiAl合金铸锭的热加工工艺提供参考。  相似文献   

19.
为了建立精确模拟6063铝合金高温流变应力的本构方程,在温度为573~773 K和应变速率为0.5~50 s-1的条件下,采用Gleeble-1500热模拟机进行等温热压缩实验。结果表明:可以采用参数Z描述温度和应变速率对6063铝合金热变形行为的影响,建立的本构方程中的材料常数(α,n,Q和A)可以表示成应变的4次多项式函数。模拟结果表明:所建立的本构方程能精确预测6063铝合金高温流变应力,因此,本构方程适合用于模拟热变形过程,如挤压和锻造,并且可以在工程应用中正确设计变形参数。  相似文献   

20.
采用Gleeble-1500热压缩模拟试验机进行压缩实验,研究ZK60(0.9Y+0.3Nd)镁合金在变形温度623~773K、应变速率0.001~1s-1的范围内的变形行为,计算应力指数和变形激活能,并采用Zener-Hollomon参数法构建合金高温塑性变形的本构关系。结果表明:在实验变形条件下,合金的真应力—真应变曲线为动态再结晶型;在实验温度范围内,应力指数随着变形温度的升高而增大,变形激活能随着变形温度和应变速率的增加而增大。对比ZK60合金,ZK60(0.9Y+0.3Nd)合金的变形激活能提高38%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号