共查询到20条相似文献,搜索用时 15 毫秒
1.
Onur Serkan Akgündüz 《国际生产研究杂志》2013,51(17):5157-5179
A mixed-model assembly line (MMAL) is a type of production line that is capable of producing a variety of different product models simultaneously and continuously. The design and planning of such lines involve several long- and short-term problems. Among these problems, determining the sequence of products to be produced has received considerable attention from researchers. This problem is known as the Mixed-Model Assembly Line Sequencing Problem (MMALSP). This paper proposes an adaptive genetic algorithm approach to solve MMALSP where multiple objectives such as variation in part consumption rates, total utility work and setup costs are considered simultaneously. The proposed approach integrates an adaptive parameter control (APC) mechanism into a multi-objective genetic algorithm in order to improve the exploration and exploitation capabilities of the algorithm. The APC mechanism decides the probability of mutation and the elites that will be preserved for succeeding generations, all based on the feedback obtained during the run of the algorithm. Experimental results show that the proposed adaptive GA-based approach outperforms the non-adaptive algorithm in both solution quantity and quality. 相似文献
2.
The increasing market demand for product variety forces manufacturers to design mixed-model assembly lines (MMAL) on which a variety of product models similar to product characteristics are assembled. This paper presents a method combining the new ranked based roulette wheel selection algorithm with Pareto-based population ranking algorithm, named non-dominated ranking genetic algorithm (NRGA) to a just-in-time (JIT) sequencing problem when two objectives are considered simultaneously. The two objectives are minimisation the number of setups and variation of production rates. This type of problem is NP-hard. Various operators and parameters of the proposed algorithm are reviewed to calibrate the algorithm by means of the Taguchi method. The solutions obtained via NRGA are compared against solutions obtained via total enumeration (TE) scheme in small problems and also against four other search heuristics in small, medium and large problems. Experimental results show that the proposed algorithm is competitive with these other algorithms in terms of quality and diversity of solutions. 相似文献
3.
4.
This article deals with a real-life multi-objective two-sided assembly line rebalancing problem (MTALRBP) with modifications of production demand, line’s structure and production process in a Chinese construction machinery manufacturing firm. The objectives are minimising the cycle time and rebalancing cost, considering some specific constraints associated with the inevitable wait time, such as novel cycle time, idle time and balanced constraints. A modified non-dominated sorting genetic algorithm II (MNSGA-II) is proposed to solve this problem. MNSGA-II employs some problem-specific designs for encoding and decoding, initial population, crossover operator, mutation operator and selection operator. The great performance of MNSGA-II is demonstrated from two aspects: one is through the comparison between the representative results and current situation in the production system in terms of some ALs’ performance evaluation index, the other is utilising the comparison between the proposed MNSGA-II and two versions of initial NSGA-II in terms of ratio, convergence and spread. 相似文献
5.
Crossover and mutation operators in NSGA-II are random and aimless, and encounter difficulties in generating offspring with high quality. Aiming to overcoming these drawbacks, we proposed an improved NSGA-II algorithm (INSGA-II) and applied it to solve the lot-streaming flow shop scheduling problem with four criteria. We first presented four variants of NEH heuristic to generate the initial population, and then incorporated the estimation of distribution algorithm and a mutation operator based on insertion and swap into NSGA-II to replace traditional crossover and mutation operators. Last but not least, we performed a simple and efficient restarting strategy on the population when the diversity of the population is smaller than a given threshold. We conducted a serial of experiments, and the experimental results demonstrate that the proposed algorithm outperforms the comparative algorithms. 相似文献
6.
7.
This paper addresses the operator assignment in predefined workstations of an assembly line to get a sustainable result of fitness function of cycle time, total idle time and output where genetic algorithm is used as a solving tool. A proper operator assignment is important to get a sustainable balanced line. To improve the efficiency and meet the desired target output within the time limit, a balanced assembly line is a must. Real world lines consist of a large number of tasks and it is very time consuming and crucial to choose the most suitable operator for a particular workstation. In addition, it is very important to assign the suitable operator at the right place as his skill of operating machines finally reflects in productivity or in the cost of production. To verify better assignments of workers, a genetic algorithm is adopted here. A heuristic is proposed to find out the sustainable assignment of operators in the predefined workstations. 相似文献
8.
基于迷宫算法和遗传算法的船舶管路路径规划 总被引:2,自引:0,他引:2
船舶管路的多样性和布局环境中约束的复杂性导致管路设计效率低下.为辅助设计人员提高管路设计效率并减少人为错误,提出了一种新的管路设计方法.首先,基于轴平行包围盒简化管路布局空间,利用栅格法对其进行离散化,并赋予空间网格特定的能量值,构建管路布局优化问题的数学模型.其次,基于遗传算法的框架,引入改进迷宫算法,提出管路路径规划方法,其中:迷宫搜索中引入辅助点的概念,增加了遗传算法中初始种群的多样性,有利于提高遗传算法的全局搜索能力;提出了定长度的编码方法,简化了管路染色体处理难度,提高了算法性能;基于引入方向优先搜索策略的迷宫算法,设计定长度编码遗传算子,保证了子代个体的质量,提高算法的收敛速度.最后,基于仿真试验,验证算法的性能.试验结果表明了该方法的可行性和高效率,以及其对实际管路布局工作具有指导意义. 相似文献
9.
10.
11.
12.
免疫粒子群算法在混流装配线排序中的应用 总被引:3,自引:0,他引:3
混流装配线上的产品投产排序是影响装配线生产效率的重要因素.建立以最小化装配线总闲置—超载成本为优化目标的装配线排序模型,采用粒子群算法来解决混流装配线的投产排序问题.考虑到基本粒子群算法易陷入局部最优解的问题,引入免疫算法思想对其进行改进,根据抗体亲和性与浓度值的计算,及时进行粒子的替换以维持种群的多样性,防止粒子过早... 相似文献
13.
In this paper, a novel stochastic two-sided U-type assembly line balancing (STUALB) procedure, an algorithm based on the genetic algorithm and a heuristic priority rule-based procedure to solve STUALB problem are proposed. With this new proposed assembly line design, all advantages of both two-sided assembly lines and U-type assembly lines are combined. Due to the variability of the real-life conditions, stochastic task times are also considered in the study. The proposed approach aims to minimise the number of positions (i.e. the U-type assembly line length) as the primary objective and to minimise the number of stations (i.e. the number of operators) as a secondary objective for a given cycle time. An example problem is solved to illustrate the proposed approach. In order to evaluate the efficiency of the proposed algorithm, test problems taken from the literature are used. The experimental results show that the proposed approach performs well. 相似文献
14.
A. Nourmohammadi 《国际生产研究杂志》2013,51(10):2833-2855
In this paper, we propose a multi-objective differential evolution algorithm (MODEA) to solve the multi-objective simple assembly line balancing problem type-2 (SALBP-2). This problem arises when in an existing assembly line, changes in the production process or demand structure take place and the organisation wants to produce the optimum number of items using a fixed number of workstations, which is associated with optimally assigning the tasks to an ordered sequence of stations such that the precedence relations are not violated and some measures of performance are optimised. The two considered objectives are: minimising the cycle time and the smoothness index of the assembly line. To that purpose, we develop a MODEA which unlike the existing algorithms deals with the considered objectives separately in selecting the next population members by proposing a new acceptance scheme based on the Pareto dominance concept and a new evaluation scheme based on TOPSIS. Also, by using the Taguchi method, we tune the effective factors of the developed algorithm. Then its efficiency is tested over available assembly line balancing benchmarks and compared to a new algorithm provided recently in the bi-objective SALBP-2 literature. Computational experiments indicate that the developed algorithm outperforms the existing meta-heuristic over a large group of benchmarks. 相似文献
15.
Wireless sensor network layout, also known as sensor node deployment, is a complex NP-complete optimization task that determines most of the functioning features of a wireless sensor network. Coverage, connectivity and lifetime (handled through its opposing parameter, power consumption), are three of the most important characteristics of the service, and are taken into consideration in this article within a multi-objective approach of the problem. Leveraging on the specific properties of the wireless sensor nodes and networks, the Proximity Avoidance Coverage-preserving Operator (PACO) for local improvement is presented, described and tested. The testbed consists of a set of state-of-the-art multi-objective optimization algorithms with different configurations, and problem instances of varying size. In all the scenarios, and more specially in the algorithmic settings that already produce high performance solutions, PACO has proven to be a robust enhancement to the raw optimization technique, without requiring additional computation, that easily scales through problem complexity. 相似文献
16.
17.
En-da Jiang 《国际生产研究杂志》2019,57(6):1756-1771
With the increasing attention on environment issues, green scheduling in manufacturing industry has been a hot research topic. As a typical scheduling problem, permutation flow shop scheduling has gained deep research, but the practical case that considers both setup and transportation times still has rare research. This paper addresses the energy-efficient permutation flow shop scheduling problem with sequence-dependent setup time to minimise both makespan as economic objective and energy consumption as green objective. The mathematical model of the problem is formulated. To solve such a bi-objective problem effectively, an improved multi-objective evolutionary algorithm based on decomposition is proposed. With decomposition strategy, the problem is decomposed into several sub-problems. In each generation, a dynamic strategy is designed to mate the solutions corresponding to the sub-problems. After analysing the properties of the problem, two heuristics to generate new solutions with smaller total setup times are proposed for designing local intensification to improve exploitation ability. Computational tests are carried out by using the instances both from a real-world manufacturing enterprise and generated randomly with larger sizes. The comparisons show that dynamic mating strategy and local intensification are effective in improving performances and the proposed algorithm is more effective than the existing algorithms. 相似文献
18.
In this paper, a mathematical model and an improved imperial competition algorithm (IICA) are proposed to solve the multi-objective two-sided assembly line rebalancing problem with space and resource restrictions (MTALRBP-SR). The aim is to find lines’ rebalance with the trade-off between efficiency, rebalancing cost and smoothing after reconfiguration. IICA utilises a new initialisation heuristic procedure based on classic heuristic rules to generate feasible initial solutions. A novel heuristic assimilation method is developed to vigorously conduct local search. In addition, a group-based decoding heuristic procedure is developed to fulfil the final task reassignment with the additional restrictions. To investigate the performance of the proposed algorithm, it is first tested on MTALRBP of benchmark problems and compared with some existing algorithms such as genetic algorithm, variable neighbourhood search algorithm, discrete artificial bee colony algorithm, and two iterated greedy algorithms. Next, the efficiency of the proposed IICA for solving MTALRBP-SR is revealed by comparison with a non-dominated sorting genetic algorithm (NSGA-II) and two versions of original ICA. Computational results and comparisons show the efficiency and effectiveness of IICA. Furthermore, a real-world case study is conducted to validate the proposed algorithm. 相似文献
19.
针对三维无线传感器网络节点自身定位问题,提出了一种基于遗传算法的新定位算法。该算法通过分析未知节点与它的无线射程范围内的已知节点之间的通讯约束和距离测量,对未知节点建立数学模型;针对此数学模型利用遗传算法求解,把该解作为未知节点的估计位置。理论分析和试验结果表明,该算法具有很强的健壮性,未知节点的失效和新节点的加入不会影响算法的性能,并且算法定位精度高,条件简单,适合各种规模的无线传感器网络的节点定位。 相似文献
20.
本文针对建立在对等方式下的融合网络提出了一种新的认证和密钥更新算法.认证包括三个方面:非漫游状态下的完整认证、漫游状态下的完整认证以及切换状态下的快速认证.密钥更新包括两个方面:非漫游状态下的密钥更新和漫游状态下的密钥更新.在算法中,通过引入认证中心,不仅实现了网络对用户身份的认证,而且实现了节点对网络身份的认证,由此保证了双方身份的合法性;同时为了实现切换的无缝性,采用节点对认证数据包进行中继转发的方式,减少了切换时的认证时间.性能分析表明,该算法能够有效地抵御常见攻击. 相似文献