首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以稀土铕离子(Ⅲ)掺杂的类普鲁士蓝膜(Eu-PB)修饰铂电极为工作电极,采用毛细管电泳-电致化学发光法(CE-ECL)对土壤中的多抗霉素B进行检测.分别对毛细管电泳分离条件和电致化学发光检测条件进行优化,并探讨了体系产生电致化学发光的机理.在优化实验条件下,多抗霉素B可在4 min内得到分离,其ECL强度值与多抗霉素B...  相似文献   

2.
新的化学发光体系测定铜   总被引:2,自引:0,他引:2  
研究了水杨酸 (R)与Cu(Ⅱ )配合物 (CuR2 2 -)催化H2 O2 氧化鲁米诺产生化学发光反应 ,最低检出限为 6 .6×10 -11g/mL ,工作曲线线性范围为 1× 10 -10 ~ 1× 10 -7g/mL ,在检测 0 .1μgCu(Ⅱ )的浓度时的相对标准偏差 (RSD)为2 .7% .铜配合物化学发光法检测病毒灵片剂 (盐酸吗林胍片 )中微量铜时快速地得到准确的结果  相似文献   

3.
合成了一种具有咪唑结构的多吡啶钌配合物RuL([Ru(bpy)_2(Hidip)](ClO_4)_2)作为新的电致化学发光(ECL)试剂。通过对核磁共振谱和质谱进行解析,证明合成的配合物即为目标产物,并对其光电性质进行了研究。发现铜离子可以选择性地猝灭RuL-TPrA(三丙胺)体系的ECL信号。基于此建立了一种在水溶液体系下检测铜离子的电致化学发光方法。通过优化实验条件,最终测得RuL-TPrA的ECL信号强度与铜离子的浓度在0.0470~9.50μmol/L之间呈现良好的线性关系,检出限(LOD)为15.6 nmol/L(S/N=3),线性方程为y=31.0 x+34.3,相关系数R~2为0.998,相对标准偏差(RSD)为0.72%(n=5)。  相似文献   

4.
毛细管区带电泳化学发光法测定食品中残留的磺胺类药物   总被引:1,自引:0,他引:1  
基于碱性介质中,磺胺类药物对Ag(Ⅲ)配合物与鲁米诺(Luminol,Lu)化学发光体系的发光强度有抑制作用,建立了毛细管电泳-化学发光分离检测磺胺甲噁唑(Sulfamethoxazole,SMZ)、磺胺二甲氧嘧啶(Sulfadimethoxine,SDM)、磺胺噻唑(Sulfathiazole,ST)的方法.3种磺胺类药物经毛细管电泳分离后,分别与Ag(Ⅲ)配合物和鲁米诺化学发光体系作用,以相对迁移时间定性,相对化学发光强度定量,采用标准曲线法测定样品中的待测物含量.对影响毛细管电泳的分离与化学发光检测的条件均进行了优化.在最佳分离检测条件下,3种磺胺类药物在2.0 ~ 200 μg/mL范围内线性良好(r>0.9977).对3种磺胺类药物平行测定7次,相对标准偏差(RSD)为1.3%~1.9%,3种磺胺类物质的检出限分别为0.33,0.20和0.034 μg/mL,加标回收率为80.2% ~ 102.9%.将本方法应用于猪肉、鸡肉、牛奶中的3种磺胺类药物残留量检测,结果令人满意.  相似文献   

5.
基于稀土Eu(Ⅲ)掺杂的类普鲁士蓝膜修饰的铂电极为工作电极,建立了测定羟考酮的毛细管电泳-电致化学发光分析方法。考察了检测电位、运行缓冲溶液的酸度及浓度、分离电压、进样条件等对电泳分离效果及检测灵敏度的影响。在最佳的实验条件下,羟考酮可在4 min内得到分离,其ECL强度值与羟考酮的质量浓度在7.0×10-2~7.0μg/mL和7.0~70.0μg/mL范围内呈良好的线性关系,检出限为4.2×10-2μg/mL(3σ),峰高和迁移时间的相对偏差分别为3.6%和0.48%(n=6)。方法用于兔血浆中羟考酮含量的检测,加标回收率在99.7%~101.0%之间。  相似文献   

6.
基于稀土掺杂类普鲁士蓝化学修饰电极对Ru(bpy)32 的电催化氧化可增敏电致发光信号,建立了一种毛细管电泳-电致化学发光测定洛贝林的新方法。研究了工作电极电位、缓冲液的酸度及其浓度、分离电压和进样时间等实验参数对洛贝林测定的影响。在优化的实验条件下,其线性范围为1.5×10-7mol/L~1.5×10-4mol/L,检出限(S/N=3)为5.0×10-8mol/L。本法可直接用于注射液和空白人尿中洛贝林的测定,回收率为98.3%~101.2%。  相似文献   

7.
王明艳  许兴友  高健  贾能勤 《催化学报》2006,27(11):971-975
 采用新型单核铜配合物高氯酸咪唑N-2-羟基乙基二乙烯三胺合铜(Ⅱ)(Cu[L(ImH)](ClO4)2)修饰热解石墨(PG)电极表面制得了Cu[L(ImH)]/PG电极,并采用循环伏安法和电位阶跃实验研究了该电极对氧的催化还原作用. 结果表明,该电极在中性和碱性条件下对氧气的催化还原具有良好的稳定性,还原峰电流随电位扫描速度的增大而增强,Ip~v1/2呈线性关系. 根据电位阶跃实验的I~t-1/2曲线,计算出电极反应的电子转移数约为4, 推断氧气在该电极上的还原是经历了4电子过程还原为水,催化机理属于混合控制的ECE (E电极反应, C化学反应)过程.  相似文献   

8.
利用金电极为工作电极,研究了辛可宁-Ru(bpy)2+3体系的电致化学发光行为。研究表明,辛可宁对Ru(bpy)2+3在电极表面的电致化学发光具有显著的增强作用,据此建立了一种高灵敏度测定辛可宁的电致化学发光分析方法。考察了硼酸-硼砂缓冲溶液的浓度、p H值、联吡啶钌浓度、光电倍增管电压等参数对实验的影响。在12 mmol/L硼酸-硼砂缓冲溶液(p H 9.0)中,辛可宁浓度的对数lgc在3.0×10-9~6.0×10-6mol/L范围内与Ru(bpy)2+3的电致化学发光强度变化值(ΔI)呈线性关系,检出限(S/N=3)为1.76×10-10mol/L。应用此法对血清中辛可宁的浓度进行测试,加标回收率为102.1%~109.5%。  相似文献   

9.
研究发现罗丹明B在碱性溶液中铂电极上有较强的电致化学发光行为.通过对不同NaOH浓度,以及对不同支持电解质的考察,确定最佳电致化学发光条件.在最优条件下,在1.2×10-7~1.1×10-6mol/L浓度范围内,罗丹明B的电致化学发光强度与其浓度成线性关系,最低检测限为9.0×10-8mol/L(S/N=3).将罗丹明B同一些生物活性物质相配合,然后通过罗丹明B的ECL技术对生物活性物质进行检测.  相似文献   

10.
研究了10,10′-二甲基-3,3′-二氨基-9,9′-双吖啶(简称DMDABA)的电致化学发光(ECL)行为.考察了电化学参数、反应介质以及pH值等条件对DMDABA电致化学发光信号的影响.结果表明:在玻碳电极上施加适当电压时,该新试剂DMDABA在KNO3乙醇溶液中产生很强的电致化学发光信号,于最优化条件下,发光强度的自然对数与DMDABA浓度的自然对数在2.16×10-5~2.16×10-8mol/L范围内呈良好的线性关系,检出限可达5.2×10-9mol/L.还用循环伏安法、电致化学发光光谱以及荧光光谱研究了DMDABA的电致化学发光机理.  相似文献   

11.
A solid-state electrochemiluminescence sensing platform based on ferrocene-labeled structure-switching signaling aptamer (Fc-aptamer) for highly sensitive detection of small molecules is developed successfully using adenosine as a model analyte. Such special sensing platform included two main parts, an electrochemiluminescence (ECL) substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Au nanoparticle and Ruthenium (II) tris-(bipyridine) (Ru(bpy)32+-AuNPs) onto Au electrode. An anti-adenosine aptamer labeled by ferrocene acted as the ECL intensity switch. A short complementary ssDNA for the aptamer was applied to hybridizing with the aptamer, yielding a double-stranded complex of the aptamer and the ssDNA on the electrode surface. The introduction of adenosine triggered structure switching of the aptamer. As a result, the ssDNA was forced to dissociate from the sensing platform. Such structural change of the aptamer resulted in an obvious ECL intensity decrease due to the increased quenching effect of Fc to the ECL substrate. The analytic results were sensitive and specific.  相似文献   

12.
Du N  Liao L  Xiao Y  Xiao X  Zhao Z  Lin Y 《Analytica chimica acta》2011,684(1-2):121-125
A highly sensitive and selective electrochemiluminescent (ECL) biosensor for the determination of adenosine was developed. Single DNA (capture DNA) was immobilized on the gold electrode through Au-thiol interaction at first. Another DNA modified with tris(2,2'-bipyridyl) ruthenium(II)-doped silica nanoparticles (Ru-SNPs) that contained adenosine aptamer was then modified on the electrode surface through hybridizing with the capture DNA. In the presence of adenosine, adenosine-aptamer complex is produced rather than aptamer-DNA duplex, resulting with the dissociation of Ru-SNPs-labeled aptamer from the electrode surface and the decrease in the ECL intensity. The decrease of ECL intensity has a direct relationship with the logarithm of adenosine concentration in the range of 1.0×10(-10) to 5.0×10(-6)molL(-1). The detection limit of the proposed method is 3.0×10(-11)molL(-1). The existence of guanosine, cytidine and uridine has little interference with adenosine detection, demonstrating that the developed biosensor owns a high selectivity to adenosine. In addition, the developed biosensor also demonstrates very good reusability, as after being reused for 30 times, its ECL signal still keeps 91% of its original state.  相似文献   

13.
Nana CG  Jian W  Xi C  Pinga DJ  Feng ZZ  Qing CH 《The Analyst》2000,125(12):2294-2298
It has been found that the electrochemical activity of glutathione was increased greatly at the glassy carbon electrodes modified with 5,10,15,20-tetraphenylporphine ruthenium(II) carbenyl (RuTPP), meso-tetraphenylporphine copper(II) complex (CuTTP) and hemin. It has been also found that glutathione would enhance the electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) at a hemin glassy carbon electrode; the enhanced ECL intensity was linear with the concentration of glutathione in the range of 1 x 10(-7)-1 x 10(-4) mol l-1, based on which method for determination of glutathione has been developed. The detection limit of glutathione was 2 x 10(-8) mol l-1, and the relative standard deviation for 1 x 10(-6) mol l-1 glutathione was 2.7%. The mechanism for this ECL system has been proposed.  相似文献   

14.
We report here on a generic approach to read out potentiometric sensors with electrogenerated chemiluminescence (ECL). In a first example, a potassium ion-selective electrode acts as the reference electrode and is placed in contact with the sample solution. The working electrode of the three-electrode cell is responsible for ECL generation and placed in a detection solution containing tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)] and the coreactant 2-(dibutylamino)ethanol (DBAE), physically separated from the sample by a bridge. Changes in the sample potassium concentration directly modulate the potential at the working electrode, and hence the ECL output, when a constant-potential pulse is applied between the two electrodes. A linear response of the ECL intensity to the logarithmic potassium concentration between 10 μm and 10 mM was found.  相似文献   

15.
Li MJ  Jiao P  Lin M  He W  Chen GN  Chen X 《The Analyst》2011,136(1):205-210
A new water-soluble iridium(III) diimine complex with appended sugar was synthesized and characterized. The electrochemiluminescent behavior of the new complex in aqueous buffer was first studied and the ECL signal was found to be much higher than that of [Ru(bpy)(3)](2+) at a Pt working electrode. Tri-n-propylamine (TPA) and antibiotics were determined by the ECL of the iridium(III) complex in aqueous buffer at the Pt electrode and the method was found to show good sensitivity and reproducibility. The new iridium(III) complex was found to display good solubility in aqueous solution and a strong ECL signal at the Pt electrode, which might open up the possibility of its application in analysis.  相似文献   

16.
A solid-state electrochemiluminescence (ECL) biosensing switch based on special ferrocene-labeled molecular beacon (Fc-MB) has been successfully developed for T4 DNA ligase detection. Such special switch system consisted of two main parts, an ECL substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Au nanoparticle and Ruthenium (II) tris-(bipyridine) (Ru(bpy)32+-AuNPs) onto Au electrode. A molecular beacon labeled by ferrocene as the ECL intensity switch. The molecular beacon is designed with special base sequence, which could combine with its target biomolecule via the reaction of the repair and recombination of nucleic acids by DNA ligase. During the reaction, the molecular beacon opened its stem-loop, and the labeled Fc was consequently kept away from the ECL substrate. Such structural change resulted in an obvious increment in ECL intensity due to the decreased Fc quenching effect to the ECL substrate. The analysis results are sensitive and specific.  相似文献   

17.
Wang J  Chen G  Huang J 《The Analyst》2005,130(1):71-75
A glassy carbon electrode (GCE) modified with nickel(II) tetrasulfophthalocyanine (NiTSPc) and Nafion was used for the investigation of the catalytic oxidation of luminol. The modified electrode was found to much more effectively improve the emission of electrochemiluminescence(ECL) of luminol in a solution containing hydrogen peroxide. The enhanced ECL signal corresponded to the catalytic oxidation of both luminol and H(2)O(2) by NiTSPc. Attached Ni(II) on GCE was oxidised to Ni(III) and then used as the catalyst for the chemiluminescence of luminol. The enhanced stability of the ECL signal with Nafion would mainly result from the prevention of the dissolution of NiTSPc and the adsorption of the oxidation product of luminol on the electrode surface. The proposed method enables a detection limit for luminal of 6.0 x 10(-8) mol L(-1) to be achieved in the presence of H(2)O(2) in the neutral solution. The enhanced ECL intensity had a linear relationship with the concentration of luminol in the range of 1.0 x 10(-7)-8.0 x 10(-6) mol L(-1).  相似文献   

18.
The electrochemiluminescence (ECL) of magnetic microbeads modified with tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) was studied in the presence of tri-n-propylamine (TPA) to develop highly sensitive ECL detection system, where the employed microbead has a diameter of 4.5 microm. The ECL signal of the [Ru(bpy)3]2+ derivative-modified magnetic microbeads was found to be affected by the geometrical distribution of the magnetic microbeads on the electrode surface. The ECL peak intensity increased with increasing the number of the beads on the electrode surfaces up to 1.6 x 10(6) beads cm(-2), although above 1.6 x 10(6) beads cm(-2), it decreased. The ECL decrease arises from the physical prevention of the ECL from reaching the photomultiplier tube by the excessive beads. The observed peak ECL signal of the [Ru(bpy)3]2+ derivative-modified magnetic microbeads in the presence of NaN3, which serves as a preservative substance, mainly appeared at a potential of +0.90 V vs Ag/AgCl where [Ru(bpy)3]2+ is hardly oxidized, whereas the ECL signal in the absence of NaN3 appeared at a potential of +1.15 V. The presence of NaN3 on the electrode surface retards formation of an oxide layer on the electrode surfaces and promotes TPA oxidation. The ECL response at +0.90 V was mainly attributed to ECL reaction of excited-state [Ru(bpy)3]2+* formed by oxidation of [Ru(bpy)3]+ with TPA radical cation, where the [Ru(bpy)3]+ was generated by reduction of [Ru(bpy)3]2+ with TPA radical.  相似文献   

19.
A controllable solid-state electrochemiluminescence (ECL) film based on efficient and stable quenching of ECL of ruthenium(II) tris-(bipyridine) (Ru(bpy)32+) by oxidizing ferrocene (Fc) at the electrode is developed. The ECL intensity is correlated to the distance which is controlled by the conformation of the ferrocene-labeled DNA molecular beacon (Fc-MB) between the Fc and Ru(bpy)32+ immobilized on the electrode. The conformation adjustment is conducted via complementary DNA hybridizing with the bases in the loop of the Fc-MB and changing the temperature of the Fc-MB and the resultant double-stranded DNA (dsDNA). Those events all result in change of the ECL intensity. With such characteristics, the solid-state Ru(bpy)32+-ECL film has the potential to be applied to reagentless DNA ECL biosensors and to calculate thermodynamic parameters of equilibrium constants of MB binding and the stem-loop formation.  相似文献   

20.
Electrogenerated chemiluminescence (ECL) for DNA hybridization detection is demonstrated based on DNA that was self-assembled onto a bare gold electrode and onto a gold nanoparticles modified gold electrode. A ruthenium complex served as an ECL tag. Gold nanoparticles were self-assembled on a gold electrode associated with a 1,6-hexanedithiol monolayer. The surface density of single stranded DNA (ssDNA) on the gold nanoparticle modified gold electrode was 4.8?×?1014 molecules per square centimeter which was 12-fold higher than that on the bare gold electrode. Hybridization was induced by exposure of the target ssDNA gold electrode to the solution of ECL probe consisting of complementary ssDNA tagged with ruthenium complex. The detection limit of target ssDNA on a gold nanoparticle modified gold electrode (6.7?×?10?12 mol L?1) is much lower than that on a bare gold electrode (1.2?×?10?10 mol L?1). The method has been applied to the detection of the DNA sequence related to cystic fibrosis. This work demonstrates that employment of gold nanoparticles self-assembled on a gold electrode is a promising strategy for the enhancement of the sensitivity of ECL detection of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号