首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Jones AC  Raschke MB 《Nano letters》2012,12(3):1475-1481
Despite the seminal contributions of Kirchhoff and Planck describing far-field thermal emission, fundamentally distinct spectral characteristics of the electromagnetic thermal near-field have been predicted. However, due to their evanescent nature their direct experimental characterization has remained elusive. Combining scattering scanning near-field optical microscopy with Fourier-transform spectroscopy using a heated atomic force microscope tip as both a local thermal source and scattering probe, we spectroscopically characterize the thermal near-field in the mid-infrared. We observe the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. We describe this behavior and the associated distinct on- and off-resonance nanoscale field localization with model calculations of the near-field electromagnetic local density of states. Our results provide a basis for intrinsic and extrinsic resonant manipulation of optical forces, control of nanoscale radiative heat transfer with optical antennas, and use of this new technique of thermal infrared near-field spectroscopy for broadband chemical nanospectroscopy.  相似文献   

2.
We have investigated the depolarization effects of light scattered by sharp tips used for apertureless near-field optical microscopy. Dielectric and metal coated tips have been investigated and depolarization factors between 5 and 30% have been measured, changing as a function of the incident light polarization and of the tip shape. The experimental results are in good agreement with theoretical calculations performed by the finite element method, giving a near-field depolarization factor close to 10%. The effect of depolarization has been investigated in polarized tip-enhanced Raman spectroscopy (TERS) experiments; the depolarization gives rise to forbidden Raman modes in Si crystals.  相似文献   

3.
The method of fluorescence resonance energy transfer scanning near-field optical microscopy (FRET SNOM) consists in the separation of a FRET pair between an SNOM tip and a sample. The donor (or acceptor) centre is located at the tip apex and scanned in the vicinity of a sample while acceptor fluorescence (or donor-fluorescence quenching) is detected. It is shown that the spatial resolution for such an approach is governed not by the aperture size but by the FRET characteristic radius (F?rster radius), and thus can attain the value of 2-7 nm with the same (or higher) sensitivity as characteristic for the aperture SNOM. The theoretical fundamentals of the method, its experimental realization and connections with other types of near-field optical microscopy are discussed. Coherent FRET SNOM, which can be realized at liquid helium temperatures, and its possible applications for quantum informatics, are briefly outlined.  相似文献   

4.
Owing to their promise of obtaining optical as well as topographic information in nanometer scale, apertureless near-field scanning optical microscopy (NSOM) and apertureless near-field scanning optical spectroscopy have drawn much attention recently. However, NSOM is still not a mature technique. A proper understanding of and the ability to tune the near field around the tip end is critically important in NSOM instrumentation and in NSOM image interpretation. On the basis of reflection geometry, we systematically studied the effects of a number of parameters pertinent in the application of apertureless NSOM, e.g., polarization, incident angle, wavelength of the incident laser, tip material, and tip length, by using the generalized field propagator technique. Our results show that all the above parameters have a significant influence on near-field enhancement and that care must be taken in the design of the experiment in order to maximize the near field. In addition to apertureless NSOM and spectroscopy, apertureless near-field lithography can benefit from these simulation results.  相似文献   

5.
The near field of an apertureless near-field scanning optical microscopy probe is investigated with a multiple-multipole technique to obtain optical fields in the vicinity of a silicon probe tip and a glass substrate. The results demonstrate that electric field enhancements of >15 relative to the incident fields can be achieved near a silicon tip, implying intensity enhancements of several orders of magnitude. This enhancement arises both from the antenna effect of the elongated probe and from a proximity effect when the probe is near the substrate surface and its image dipoles play a role.  相似文献   

6.
Near-field photochemical imaging of noble metal nanostructures   总被引:1,自引:0,他引:1  
The sub-diffraction imaging of the optical near-field in nanostructures, based on a photochemical technique, is reported. A photosensitive azobenzene-dye polymer is spin coated onto lithographic structures and is subsequently irradiated with laser light. Photoinduced mass transport creates topographic modifications at the polymer film surface that are then measured with atomic force microscopy (AFM). The AFM images correlate with rigorous theoretical calculations of the near-field intensities for a range of different nanostructures and illumination polarizations. This approach is a first step toward additional methods for resolving confined optical near fields, which can augment scanning probe methodologies for high spatial resolution of optical near fields.  相似文献   

7.
Lee Y  Bard AJ 《Analytical chemistry》2002,74(15):3626-3633
A technique that combines scanning electrochemical microscopy (SECM) and optical microscopy (OM) was implemented with a new probe tip. The tip for scanning electrochemicaVoptical microscopy (SECM/OM) was constructed by insulating a typical gold-coated near-field scanning optical microscopy tip using electrophoretic anodic paint. Once fabricated, the tip was characterized by steady-state cyclic voltammetry, as well as optical and electrochemical approach experiments. This tip generated a stable steady-state current and well-defined SECM approach curves for both conductive and insulating substrates. Durable tips whose geometry was a ring with < 1 microm as outer ring radius could be consistently fabricated. Simultaneous electrochemical and optical images of an interdigitated array electrode were obtained with a resolution on the micrometer scale, demonstrating good performance of the tip as both an optical and an electrochemical probe for imaging microstructures. The SECM feedback current measurements were successfully employed to determine tip-substrate distances for imaging.  相似文献   

8.
We describe a method of imaging the intensity profiles of light in near-field lithographic experiments directly by using a sensitive photoresist. This technique was applied to a detailed study of the irradiance distribution in the optical near field with contact-mode photolithography carried out by use of elastomeric phase masks. The experimental patterns in the photoresist determined by scanning electron microscopy and atomic force microscopy were compared with the corresponding theoretical profiles of intensity calculated by use of a simple scalar analysis; the two correlate well. This comparison makes it possible to improve the theoretical models of irradiance distribution in the near field. Analysis of the images highlights issues in the experimental design, provides a means for the optimization of this technique, and extends its application to the successful fabrication of test structures with linewidths of ~50 nm.  相似文献   

9.
Optical microscopy with nanoscale resolution, beyond that which is possible with conventional diffraction-limited microscopy, may be achieved by scanning a nanoantenna in close proximity to a sample surface. This review will first aim to provide an overview of the basic principles of this technique of scanning near-field optical microscopy (SNOM), before moving on to consider the most widely implemented form of this microscopy, in which the sample is illuminated through a small aperture held less than 10 nm from the sample surface for optical imaging with a resolution of ca. 50 nm. As an example of the application of this microscopy, the results of SNOM measurements of light-emitting polymer nanostructures are presented. In particular, SNOM enables the unambiguous identification of the different phases present in the nanostructures, through the local analysis of the fluorescence from the polymers. The exciting new possibilities for high-resolution optical microscopy and spectroscopy promised by apertureless SNOM techniques are also considered. Apertureless SNOM may involve local scattering of light from a sample surface by a tip, local enhancement of an optical signal by a metal tip, or the use of a fluorescent molecule or nanoparticle attached to a tip as a local optical probe of a surface. These new optical nanoprobes offer the promise of optical microscopy with true nanometre spatial resolution.  相似文献   

10.
We consider characterization of a near-field optical probe in terms of detection efficiency of different spatial frequencies associated with propagating and evanescent field components. The former are both detected with and radiated from an etched single-mode fiber tip, showing reciprocity of collection and illumination modes. Making use of a collection near-field microscope with a similar fiber tip illuminated by an evanescent field, we measure the collected power as a function of the field spatial frequency in different polarization configurations. Considering a two-dimensional probe configuration, numerical simulations of detection efficiency based on the eigenmode expansion technique are carried out for different tip apex angles. The detection roll-off for high spatial frequencies observed in the experiment and obtained during the simulations is fitted using a simple expression for the transfer function, which is derived by introducing an effective point of (dipolelike) detection inside the probe tip. It is found to be possible to fit reasonably well both the experimental and the simulation data for evanescent field components, implying that the developed approximation of the near-field transfer function can serve as a simple, rational, and sufficiently reliable means of fiber probe characterization.  相似文献   

11.
Barchiesi D  Gharbi T 《Applied optics》1999,38(31):6587-6596
In near-field optical microscopy the resolution is strongly related to the experimental illumination conditions and to the separation between tip and sample. Therefore the spectral information in near-field data (related to the resolution in images) can be described only locally as a function of the tip-sample position. To make a local study of the spectral information in near-field data, we use wavelet decomposition that is associated with the calculation of entropy. We deduce the resolution from the characteristics of the wavelet, which leads to an automatic and numerical evaluation of the resolution in near-field data.  相似文献   

12.
Minh PN  Ono T  Tanaka S  Esashi M 《Applied optics》2001,40(15):2479-2484
We present experimental measurements and simulation of the spatial distribution of near-field light at the aperture of a Si micromachined near-field scanning optical microscopy (NSOM) probe. A miniature aperture at the apex of a SiO(2) tip on a Si cantilever was fabricated with the low temperature oxidation and selective etching technique. An optical transmission efficiency (optical throughput) of the fabricated probe was determined to be approximately 10(-2) when the aperture size was approximately 100 nm, which is several orders of magnitude higher than that for conventional optical fibers. A three-dimensional finite difference time domain (FDTD) simulation shows that the near-field light is well confined within the aperture area with a throughput of 1% for a 100-nm aperture, which is in good agreement with the measurement. The spatial distribution of the near-field light at an aperture of 300-nm diameter shows a full width at half-maximum of 250 nm with a sharp peak that is nearly 60 nm wide. The 2.4% throughput for a 300-nm aperture was estimated based on the measured spatial distribution of the near-field light that is almost the same as the experimental result. We also present the initial results of the fabrication of high throughput coaxial and surface plasmon enhancement NSOM probes.  相似文献   

13.
With the use of optical near-field techniques, it is now possible to excite or observe surface plasmons with high lateral resolution. A theoretical study is presented of surface plasmon excitation by near-field optical probes and the influence of well-defined structures on surface plasmon propagation and surface plasmon detection in the far field. The generation and the diffraction of the surface plasmon is calculated by using a theoretical scheme founded upon a first-order perturbation expansion of the Rayleigh-Fano method. A very good agreement is obtained between numerical and experimental results. The theoretical tools used should prove a useful guideline for future experiments of nanooptics with surface plasmons.  相似文献   

14.
We report results of theoretical simulations of optical field enhancement in a system consisting of spherical and hemispherical noble metal nanoparticles on a smooth titania surface, which is a model system relevant to applications in photo-catalysis and solar energy harvesting. Simulations conducted using Finite-Difference Time-Domain (FDTD) technique reveal presence of resonant optical extinction bands at visible wavelengths, whose optical scattering is weak, but the associated localization and intensity enhancement of optical near-field are significant. For hemispheres, the field is strongly localized at the metal-substrate interface, where intensity enhancement of up to 10(4) times is reached. Moreover, the field is predominantly polarized along the normal to the substrate. These findings indicate potential of the hemisphere-substrate system for applications relying on optically promoted charge transport through the metal-substrate interface, such as photochemical reactions and light-to-current conversion. The results of theoretical analysis are compared with reported experimental data on photo-catalytic reactions.  相似文献   

15.
We present high-resolution images with near-field scanning optical microscopy to study phase separation in polymer films of poly(styrene) and poly(3-octyl-thiophene). Transmission and transmitted fluorescence near-field scanning optical microscope images were taken for direct visualization of the intermediate steps of phase separation in a regime where small domain sizes prevent investigation by conventional microscopy. The interpretation of near-field data on samples with large or varying film thickness or topography are also discussed, and a method for recognizing topographically induced artifacts in a quantitative way is suggested.  相似文献   

16.
A new experimental approach to multiparametric three-dimensional (3D) investigation of a broad class of composite nanostructural materials is developed on the basis of scanning near-field optical nanotomography (SNONT). Using this method, it is possible to simultaneously study the optical properties, 3D morphology, and distribution of the mechanical and electrical properties of the same region of a sample. The proposed method combines features of the confocal and near-field optical microspectroscopy (fluorescence and Raman spectroscopy) with a lateral resolution of up to 50 nm and scanning-probe microscopy. The possibility of studying the volume distribution of optical, morphological, electrical, and mechanical characteristics of a material with nanoscale resolution is related to the probing of sequential layers at a step of up to 20 nm and a total Z-scan depth of up to 3 mm. In particular, the SNONT method has been used to study a liquid-crystalline polymer doped with fluorescent nanocrystals.  相似文献   

17.
Lee Y  Amemiya S  Bard AJ 《Analytical chemistry》2001,73(10):2261-2267
Ring ultramicroelectrodes, which are of particular interest as probes for scanning electrochemical microscopy (SECM), combined with near-field scanning optical microscopy, were investigated. Theoretical SECM tip current-distance (approach) curves for a ring electrode were calculated by numerical (finite element) analysis. The SECM curves obtained were a function of the geometry of the tips including the thickness of the ring and the insulating sheath. Theoretical approach curves over conductive substrates showed a strong dependence on the ratio of inner to outer radii of ring microelectrodes (a/b) and were relatively insensitive to the thickness of the insulating sheath (r(g)). For insulating substrates, however, the approach curves varied significantly with r(g), but much less with the a/b ratio. Comparison of experimental and theoretical SECM curves provided a good method of evaluating the size and shape of ring electrodes. Good agreement of the experimental and theoretical curves was found with a ring microelectrode with a nominal 200-nm ring thickness, yielding values of 1.7, 1.9, and 5.7 microm for the inner (a) and outer (b) radii of a ring and the outermost radius of insulating sheath (r(g)), respectively.  相似文献   

18.
Recently, a reflection-mode near-field optical microscope with an apertureless tungsten tip has been introduced and 100-nm resolution has been achieved [R. Bachelot, P. Gleyzes, and A. C. Boccara, Microsc. Microanal. Microstruc. 5, 389-397 (1994)]. The optical signal is recorded in parallel with a tapping-mode atomic force microscope signal. By showing several images here, we confirm the capabilities of this device and clearly demonstrate a 20-nm (~lambda/35) resolution that has been achieved with smaller tips. A study of these images shows that both the topography and the near electromagnetic field of the sample can be independently probed by this device. Additionally, we discuss the principle of our approach, notably on the basis of interference phenomena between a Rayleigh scatterer and its image through the reflecting surface, and some of the setup's experimental characteristics are presented.  相似文献   

19.
We investigate the effect of defects in the metal-coating layer of a scanning near-field optical microscopy (SNOM) probe on the coupling of polarization modes using rigorous electromagnetic modeling tools. Because of practical limitations, we study an ensemble of simple defects to identify important trends and then extrapolate these results to more realistic structures. We find that a probe with many random defects will produce a small but significant coupling of energy between a linearly polarized input mode and a radial/longitudinal polarization mode, which is known to produce a strongly localized emitted optical field and is desirable for SNOM applications.  相似文献   

20.
反射式近场光学显微镜样品近场光分布特性   总被引:1,自引:0,他引:1  
建立了一种反射式近场光学显微镜中样品近场光分布特性的模型,应用矢量衍射理论,得到了系统的场方程。在弱波动条件下,采用微扰法对场方程进行了求解,能方便地得到样品表面的各阶近场光反射和透射模复振幅表达式。计算结果表明,一级场分布要比零级场小一个量级,各阶近场信号的强弱完全由面形函数的傅里叶变换决定。通过与零级结果的比较,证明了计算结果的正确性。提供了一种计算样品表面近场分布简便方法,对反射式近场光学显微镜中调制检测技术具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号