首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
Cytokines modulate routes of collagen breakdown   总被引:2,自引:0,他引:2  
In this paper, we review recent work on collagen degradation. 2 main routes of breakdown are described and their relevance during healthy and inflammatory conditions of the periodontium is discussed. Special attention is paid to the possible role of cytokines, in particular interleukin 1 (IL-1) and transforming growth factor β (TGF-β), on the modulation of collagen phagocytosis and metalloproteinase production. IL-1 has been shown to have a dual function in collagen digestion. It inhibits the intracellular phagocytic pathway, but at the same time, it strongly promotes extracellular digestion by inducing the release of collagenolytic enzymes like collagenase. TGF-β has an opposite effect on both pathways and antagonizes IL-1. Collagenase is released in an inactive form, and a considerable fraction of the proenzyme may become incorporated in the extracellular matrix. This reservoir of latent enzyme can be activated (for instance by plasmin). leading to a sudden and extensive breakdown of the collagenous fibre meshwork. It is suggested that this phenomenon may also take place during progressive periodontitis and could explain an episodic nature of collagenolysis. clinically resulting in bursts of attachment loss (burst hypothesis).  相似文献   

2.
3.
4.
Although the connective tissues of the periodontium are subject to a high turnover rate, no conclusive evidence has yet emerged that periodontal collagen turnover is essential for the eruption of teeth or for root elongation. These processes were studied in mice deficient in MT1-MMP, a membrane type matrix metalloproteinase essential for remodeling of soft tissue-hard tissue interfaces. Mandibular first molars of deficient mice and their wild-type littermates were subjected to stereological analysis in order to assess root length, eruption and the volume density of phagocytosed collagen in periodontal ligament fibroblasts. The data showed that both eruption and root elongation were severely inhibited in animals lacking the enzyme. We also found, in periodontal ligament fibroblasts from MT1-MMP-deficient mice, a massive age-related accumulation (up to 60-fold over controls) of collagen fibril-containing phagosomes. Phagolysosomes, which represent the next downstream step in collagen fibril degradation by the lysosomal pathway, did not accumulate. These observations indicate that MT1-MMP plays a central role in periodontal remodeling. The stunted root growth and the failure to erupt indicate the important role of the enzyme in tooth development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号