首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

2.
Silica glass was implanted with 50 keV Cu+ ions at various fluences from 6×1015 to 8×1016 ions/cm2 and thermally-annealed in air between room temperature to 1200 °C. UV/visible spectroscopy measurements reveal absorption bands at characteristics surface plasmon resonance (SPR) frequencies, signifying the formation of copper colloids in silica, even without thermal treatments. Such copper nanoclusters can be attributed to the relatively high mobility of copper atoms, even at ambient conditions. Using the equation derived from the framework of free-electron theory, the average radii of the Cu particles were found to be in the range 2-4 nm from the experimental surface plasmon absorption peaks. Radioluminescence (RL) spectra exhibited broad bands at 410 and 530 nm, associated with the presence of Cu+ ions in the as-implanted samples. The effect of thermal annealing in air on absorption and emission spectra of these Cu-implanted samples, as well as the formation of copper nanoclusters from original Cu+ ions, is discussed.  相似文献   

3.
Stable photoluminescence (PL) from AgI nanoparticles embedded in silica glass was investigated at room temperature. The Z1,2 excitonic emission of AgI exhibits fine structure with spacing of ∼0.20 eV (1610 cm−1), which is assigned to the frequency of vibration in interfacial water species. The PL excitation spectrum displays two newly observed bands at 3.45 and 4.35 eV associated with AgI-silica interaction. We suggest that the excitons in AgI are localized in the AgI/SiO2 interface region before radiative recombination.  相似文献   

4.
The electronic structure and interfacial chemistry of thin manganese films on p-Si (1 0 0) have been studied by photoelectron spectroscopy measurements using synchrotron radiation of 134 eV and from X-ray diffraction data. The Mn/p-Si structures have been irradiated from swift heavy ions (∼100 MeV) of Fe7+ with a fluence of 1 × 1014 ions/cm2. Evolution of valence band spectrum with a sharp Fermi edge has been obtained. The observed Mn 3d peak has been related to the bonding of Mn 3d-Si 3sp states. Mn 3p (46.4 eV), Mn 3s (81.4 eV) and Si 2p (99.5 eV) core levels have also been observed which show a binding energy shift towards lower side as compared to their corresponding elemental values. From the photoelectron spectroscopic and X-ray diffraction results, Mn5Si3 metallic phase of manganese silicide has been found. The silicide phase has been found to grow on the irradiation.  相似文献   

5.
Ca-doped LaMnO3 (LCMO) thin films have been successfully prepared on SrTiO3 (STO) and [(LaAlO3)0.3-(SrAlTaO6)0.7] (LSAT) substrates using the excimer laser assisted metal-organic deposition (ELAMOD) process. The crystallization and the epitaxial growth of the amorphous metal-organic LCMO thin films have been achieved using a KrF excimer laser irradiation while the substrates were kept at constant temperature of 500 °C. Epitaxial films were obtained using laser fluence in the interval of 50-120 mJ/cm2. The microstructure of the LCMO films was studied using cross-section transmission electron microscopy. High quality of LCMO films having smooth surfaces and sharp interfaces were obtained on both the STO and the LSAT substrates. The effect of the laser fluence on the temperature coefficient of resistance (TCR) was investigated. The largest values of TCR of the LCMO grown on the LSAT and the STO substrates of 8.3% K−1 and 7.46% K−1 were obtained at different laser fluence of 80 mJ/cm2 and 70 mJ/cm2, respectively.  相似文献   

6.
In this paper, we investigated the mechanism of crystallization induced by femtosecond laser irradiation for an amorphous Si (a-Si) thin layer on a crystalline Si (c-Si) substrate. The fundamental, SHG, THG wavelength of a Ti:Sapphire laser was used for the crystallization process. To investigate the processed areas we performed Laser Scanning Microscopy (LSM), Transmission Electron Microscopy (TEM) and Imaging Pump-Probe measurements. Except for 267 nm femtosecond laser irradiation, the crystallization occurred well. The threshold fluences for the crystallization using 800 nm and 400 nm femtosecond laser irradiations were 100 mJ/cm2 and 30 mJ/cm2, respectively. TEM observation revealed that the crystallization occurred by epitaxial growth from the boundary surface between the a-Si layer and c-Si substrate. The melting depths estimated by Imaging Pump-Probe measurements became shallower when the shorter wavelength was used.  相似文献   

7.
Laser ablation is widely used to assist in the fabrication of prototype lithium manganate (LiMn2O4) thin film structures for Li-ion battery electrodes via the pulsed laser deposition technique. However, films can be considerably Li and/or O deficient, depending the deposition conditions used. Here we present data on the ionic component of laser-produced plasma in laser ablation of lithium manganate with ns excimer laser. Plasma was monitored using an electrical Langmuir ion probe, in time-of-flight mode in conjunction with mass spectrometry to identify the dominant ionic species. Ablation in vacuum at ∼2.5 J cm−2 revealed the plasma's ionic component was composed primarily of singly charged Li and Mn ions. The time-of-flight data indicates significant deceleration of the plasma when ablation is carried out in an oxygen background gas pressure of the order of 10 Pa. The implications for thin film growth are considered in terms of the possible gas phase interactions and/or thin film re-sputtering yield.  相似文献   

8.
Interactions induced in Al/Ti multilayers by implantation of Ar ions at room temperature were investgated. Initial structures consisted of (Al/Ti) × 5 multilayers deposited by d.c. ion sputtering on Si(1 0 0) wafers, to a total thickness of ∼250 nm. They were irradiated with 200 keV Ar+ ions, to the fluences from 5 × 1015 to 4 × 1016 ions/cm2. It was found that ion irradiation induced a progressed intermixing of the multilayer constituents and Al-Ti nanoalloying for the highest applied fluence. The resulting nanocrystalline structure had a graded composition with non-reacted or interdiffused Al and Ti, and γ-AlTi and AlTi3 intermetallic phases. Most intense reactivity was observed around mid depth of the multilayers, where most energy was deposited by the impact ions. It is presumed that Al-Ti chemical reaction is triggered by thermal spikes and further enhanced by chemical driving forces. The applied processing can be interesting for fabrication of tightly bond multilayered structures with gradual changes of their composition and properties.  相似文献   

9.
We investigated UV absorption changes induced in 3.5 mol% Ge-doped fused silica at high-intensity (∼1011-1013 W/cm2) femtosecond (130 fs) irradiation at 267, 400 and 800 nm. We have shown that the induced spectra in the region 190-300 nm are similar in all three cases. At 800 nm irradiation, in addition to the UV absorption changes, we observed small-scale damage due to self-focusing. This damage appears when the incident pulse fluence value of about 1 J/cm2 (pulse intensity of about 7.5 × 1012 W/cm2) is overcome, while the threshold for the induced absorption changes is twice lower.  相似文献   

10.
We report the modification of molecular beam epitaxy grown strain-relaxed single crystalline Si1−xGex layers for x=0.5 and 0.7 as a result of irradiation with 100 MeV Au ions at 80 K. The samples were structurally characterized by Rutherford backscattering spectrometry/channeling, transmission electron microscopy (TEM) and high-resolution X-ray diffraction before and after irradiation with fluences of 5×1010, 1×1011 and 1×1012 ions/cm2, respectively. No track formation was detected in both the samples from TEM studies and finally, the crystalline to amorphous phase transformation at 1×1012 ions/cm2 was examined to be higher for Si0.3Ge0.7 layers compared to Si0.5Ge0.5 layers.  相似文献   

11.
Periodic Au nanoparticle arrays were fabricated on silica substrates using nanosphere lithography. The identical single-layer masks were prepared by self-assembly of polystyrene nanospheres with radius R = 350 nm. The structural characterization of nanosphere masks and periodic particle arrays was investigated by atomic force microscopy. The nonlinear optical properties of the Au nanoparticle arrays were determined using a single beam z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that periodic Au nanoparticle arrays exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 6.09 × 10−6 cm2/kW and β = −1.87 × 10−6 m/W, respectively.  相似文献   

12.
Intensities of positive and negative ion species emitted from thermally oxidized and plasma-enhanced chemical vapor deposited (PECVD) SiO2 films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and the Saha-Boltzmann equation. Intensities of positive and negative secondary ion species were normalized to those of 28Si+ and 28Si ions, respectively, and an effective temperature of approximately (7.2 ± 0.1) × 103 K of the sputtered region bombarded with pulsed 22 kV Au3+ primary ions was determined. Intensity spectra showed polarity dependence on both n and m values of SinOm fragments, and a slight shift to negative polarity for PECVD SiO2 compared to thermally oxidized SiO2 films. By dividing the intensity ratios of negative-to-positive ions for PECVD SiO2 by those for thermally oxidized SiO2 films to cancel statistical factors, the difference in absolute electronegativity (half the sum of ionization potential and electron affinity of fragments) between both films was obtained. An increase in electronegativity for SiOm (m = 1, 2) and Si2Om (m = 1-4) fragments for PECVD SiO2 films compared to thermally oxidized films was obtained to be 0.1-0.2 Pauling units, indicating a more covalent nature of Si-O bonds for PECVD SiO2 films compared to the thermally oxidized SiO2 films.  相似文献   

13.
Optimization of a laser mitigation process in damaged fused silica   总被引:1,自引:0,他引:1  
One of the major concerns encountered in high power laser is the laser-induced damage of optical components. This is a main issue of the development of the Europe's biggest laser, known as Laser Méga Joule (LMJ) especially in the section where the beam wavelength is 351 nm. This study deals with the development of a laser treatment process to improve the laser damage resistance of silica optical components. First, by irradiating the component at 355 nm in the nanosecond regime, defects of the silica optic are revealed and evolve as damage. Next, the damaged sites are irradiated with a CO2 laser at a 10.6 μm wavelength in order to melt and evaporate the silica in the damage neighborhood. In this study, we performed a variation of the CO2 laser parameters to obtain the most efficient stabilization. To check this stabilization, damage resistance tests were performed with an UV laser representative of the LMJ (at 355 nm/2.5 ns). The results show that we can stabilize weak points and thereby make the component resistant to subsequent UV laser irradiation.  相似文献   

14.
Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results for metal surface treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 1.2 J/cm2 in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG, two laser spot diameters were used: 0.8 and 1.5 mm.Results using pulse densities of 2500 pulses/cm2 in 6061-T6 aluminum samples and 5000 pulses/cm2 in 2024 aluminum samples are presented. High level of compressive residual stresses are produced −1600 MPa for 6061-T6 Al alloy, and −1400 MPa for 2024 Al alloy. It has been shown that surface residual stress level is higher than that achieved by conventional shot peening and with greater depths. This method can be applied to surface treatment of final metal products.  相似文献   

15.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

16.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

17.
The structure and electronic properties of epitaxial grown CeO2(1 1 1) thin films before and after Ar+ bombardment have been comprehensively studied with synchrotron radiation photoemission spectroscopy (SRPES). Ar+ bombardment of the surface causes a new emission appearing at 1.6 eV above the Fermi edge which is related to the localized Ce 4f1 orbital in the reduced oxidation state Ce3+. Under the condition of the energy of Ar ions being 1 keV and a constant current density of 0.5 μA/cm2, the intensity of the reduced state Ce3+ increases with increasing time of sputtering and reaches a constant value after 15 min sputtering, which corresponds to the surface being exposed to 2.8 × 1015 ions/cm2. The reduction of CeO2 is attributed to a preferential sputtering of oxygen from the surface. As a result, Ar+ bombardment leads to a gradual buildup of an, approximately 0.69 nm thick, sputtering altered layer. Our studies have demonstrated that Ar+ bombardment is an effective method for reducing CeO2 to CeO2−x and the degree of the reduction is related to the energy and amount of Ar ions been exposed to the CeO2 surface.  相似文献   

18.
We report on the femtosecond laser micromachining of photo-induced embedded diffraction grating in flexible Poly (Dimethly Siloxane) (PDMS) plates using a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp = 800 nm). The refractive index modifications with diameters ranging from 2 μm to 5 μm were photo-induced after the irradiation with peak intensities of more than 1 × 1011 W/cm2. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which femtosecond laser was focused. The maximum refractive index change (Δn) was estimated to be 2 × 10−3. By the X-Y-Z scanning of sample, the embedded diffraction grating in PDMS plate was fabricated successfully using a femtosecond laser.  相似文献   

19.
CaTiO3:Pr3+ films were deposited on different substrates such as Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica using pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by XRD and SEM measurements. The films grown on the different substrates have different crystallinity and morphology. The FWHM of (2 0 0) peak are 0.18, 0.25, 0.28, and 0.30 for Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica, respectively. The grain sizes of phosphors grown on different substrates were estimated by using Scherrer's formula and the maximum crystallite size observed for the thin film grown on Al2O3 (0 0 0 1). The room temperature PL spectra exhibit only the red emission peak at 613 nm radiated from the transition of (1D2 → 3H4) and the maximum PL intensity for the films grown on the Al2O3 (0 0 0 1) is 1.1, 1.4, and 3.7 times higher than that of the CaTiO3:Pr3+ films grown on MgO (1 0 0), Si (1 0 0), and fused Sillica substrates, respectively. The crystallinity, surface morphology and luminescence spectra of thin-film phosphors were highly dependent on substrates.  相似文献   

20.
A study of visible laser ablation of silicon, in vacuum, by using 3 ns Nd:YAG laser radiation is reported. Nanosecond pulsed ablation, at an intensity of the order of 1010 W/cm2, produces high non-isotropic emission of neutrals and ionic species. Mass quadrupole spectrometry, coupled to electrostatic ion deflection, allows estimation of the energy distributions of the emitted species from plasma. Neutrals show typical Boltzmann-like distributions while ions show Coulomb-Boltzmann-shifted distributions depending on their charge state. Time-of-flight measurements were also performed by using an ion collector consisting of a collimated Faraday cup placed along the normal to the target surface. Surface profiles of the craters, created by the laser radiation absorption, permitted to study the ablation threshold and ablation yields of silicon in vacuum. The plasma fractional ionization, temperature and density were evaluated by the experimental data. A special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated at the non-equilibrium plasma conditions. The angular distribution of the neutral and ion species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号