首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Due to the distance, faintness, and very recent discovery ofKuiper Belt Objects (KBOs) and Centaurs, very little is knownabout the physical characteristics of these basic buildingblocks of the solar system. New intermediate-band photometryobservations of KBOs and Centaurs suggest that absorption bandsexist in the visible portion of their spectra, which could offerinsights into the surface composition of these objects.  相似文献   

2.
We present models of the spectral reflectances of groups of outer Solar System objects defined primarily by their colors in the spectral region 0.4–1.2 mu;m, and which have geometric albedo ~0.04 at wavelength 0.55 μm. Our models of the groups with the strongest reflectance gradients (reddest colors) use combinations of organic tholins. We test the hypothesis that metal-reddened igneous rock-forming minerals contribute to the red colors of Centaurs and KBOs by using the space-weathered lunar soil as one of the components of our models. We find that our models can admit the presence of moderate amounts of space-weathered (metal-reddened) minerals, but that they do not require this material to achieve the red colors of the reddest outer Solar System bodies. Our models with organic tholins are consistent with the results of other investigators.  相似文献   

3.
Amajor objective of the Infrared Space Observatory (ISO) is the determination of the sized and albedoes of several objects in the "Kuiper disc".The method by which this will be achieved is described.It is shown that the unknown shapes and surface thermal properties proviede additional complications to the interpretation of ISO data.The requirement for ground-based measurements of the visual light curves of these objects is demonstrated and the implications of the results of the ISO observ Vations is discussed.  相似文献   

4.
The Kuiper Belt zone is unique insofar as the major heat sources of objects a few tens of kilometers in size—solar radiation on the one hand and radioactive decay on the other—have comparable power. This leads to unique evolutionary patterns, with heat waves propagating inward from the irradiated surface and outward from the radioactively heated interior. A major radioactive source that is considered in this study is 26Al. The long-term evolution of several models with characteristics typical of Kuiper Belt objects is followed by means of a 1-D numerical code that solves the heat and mass balance equations on a spherically symmetric grid. The free parameters considered are radius (10-500 km), heliocentric distance (30-120 AU), and initial 26Al content (0-5×10−8 by mass). The initial composition assumed is a porous mixture of ices (H2O, CO, and CO2) and dust. Gases released in the interior are allowed to escape to the surface. It is shown that, depending on parameters, the interior may reach quite high temperatures (up to 180 K). The models suggest that Kuiper Belt objects are likely to lose the ices of very volatile species during early evolution; ices of less volatile species are retained in a surface layer, about 1 km thick. The models indicate that the amorphous ice crystallizes in the interior, and hence some objects may also lose part of the volatiles trapped in amorphous ice. Generally, the outer layers are far less affected than the inner part, resulting in a stratified composition and altered porosity distribution. These changes in structure and composition should have significant consequences for the short-period comets, which are believed to be descendants of Kuiper Belt objects.  相似文献   

5.
6.
7.
8.
The Oort Cloud, the Kuiper belt and the Scattered Disk are dynamically distinct populations of small bodies evolving in the outer regions of the Solar System. Whereas their collisional activity is now quiet, gravitational interactions with giant planets may have shaped these populations both dynamically and collisionally during their formation. Using a hybrid approach [Charnoz, S., Morbidelli, A., 2003. Icarus 166, 141-166], the present paper tries to couple the primordial collisional and dynamical evolution of these three populations in a self-consistent way. A critical parameter is the primordial size-distribution. We show that the initial planetesimal size distribution that allows an effective mass depletion of the Kuiper belt by collisional grinding, would decimate also the population of comet-size bodies that end in the Oort Cloud and, in particular, in the Scattered Disk. As a consequence, the Oort Cloud and the Scattered Disk would be too anemic, by a factor 20 to 100, relative to the estimates achieved from the observation of the fluxes of long period and Jupiter family comets, respectively. For these two reservoirs to have a sufficient number of comets, the initial size distribution in the planetesimal disk had to be such that the mass depletion by collisional erosion of the Kuiper belt was negligible. Consequently the current mass deficit of the Kuiper belt needs to be explained by dynamical mechanisms.  相似文献   

9.
In this paper, we used CORSIKA code to understand the characteristics of cosmic ray induced showers at extremely high energy as a function of energy, detector distance to shower axis, number, and density of secondary charged particles and the nature particle producing the shower. Based on the standard properties of the atmosphere, lateral and longitudinal development of the shower for photons and electrons has been investigated. Fluorescent light has been collected by the detector for protons, helium, oxygen, silicon, calcium and iron primary cosmic rays in different energies. So we have obtained a number of electrons per unit area, distance to the shower axis, shape function of particles density, percentage of fluorescent light, lateral distribution of energy dissipated in the atmosphere and visual field angle of detector as well as size of the shower image. We have also shown that location of highest percentage of fluorescence light is directly proportional to atomic number of elements. Also we have shown when the distance from shower axis increases and the shape function of particles density decreases severely. At the first stages of development, shower axis distance from detector is high and visual field angle is small; then with shower moving toward the Earth, angle increases. Overall, in higher energies, the fluorescent light method has more efficiency. The paper provides standard calibration lines for high energy showers which can be used to determine the nature of the particles.  相似文献   

10.
The dynamical stability of a bound triple system composed of a small binary or minor planetary system moving on a orbit inclined to a central third body is discussed in terms of Hill stability for the full three-body problem. The situation arises in the determination of stability of triple star systems against disruption and component exchange and the determination of stability of extrasolar planetary systems and minor planetary systems against disruption, component exchange or capture. The Hill stability criterion is applied to triple star systems and extrasolar planetary systems, the Sun-Earth-Moon system and Kuiper Belt binary systems to determine the critical distances for stable orbits. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the binary also produces similar effects.These type of changes make exchange or disruption of the component masses more likely. Increasing the eccentricity of the binary orbit relative to the third body substantially decreases stability regions as the eccentricity reaches higher values. The Kuiper Belt binaries were found to be stable if they move on circular orbits. Taking into account the eccentricity, it is less clear that all the systems are stable.  相似文献   

11.
Two 9400-year long 10Be data records from the Arctic and Antarctic and a 14C record of equal length were used to investigate the periodicities in the cosmic radiation incident on Earth throughout the past 9400 years. Fifteen significant periodicities between 40 and 2320 years are observed in the 10Be and 14C records, there being close agreement between the periodicities in each record. We found that the periodic variations in the galactic cosmic radiation are the primary cause for periods <?250 years, with minor contributions of terrestrial origin possible >?250 years. The spectral line for the Gleissberg (87-year) periodicity is narrow, indicating a stability of ≈?0.5 %. The 9400-year record contains 26 Grand Minima (GM) similar to the Maunder Minimum, most of which occurred as sequences of 2?–?7 GM with intervals of 800?–?1200 years in between, in which there were no GM. The intervals between the GM sequences are characterised by high values of the modulation function. Periodicities <?150 years are observed in both the GM intervals and the intervals in between. The longer-period variations such as the de Vries (208-year) cycle have high amplitudes during the GM sequences and are undetectable in between. There are three harmonically related pairs of periodicities (65 and 130 years), (75 and 150 years), and (104 and 208 years). The long periodicities at 350, 510, and 708 years closely approximate 4, 6, and 8 times the Gleissberg period (87 years). The well-established properties of cosmic-ray modulation theory and the known dependence of the heliospheric magnetic field on the solar magnetic fields lead us to speculate that the periodicities evident in the paleo-cosmic-ray record are also present in the solar magnetic fields and in the solar dynamo. The stable, narrow natures of the Gleissberg and other periodicities suggest that there is a strong “frequency control” in the solar dynamo, in strong contrast to the variable nature (8?–?15 years) of the Schwabe (11-year) solar cycle.  相似文献   

12.
Direct measurements of plasma motions in the photosphere are limited to the line-of-sight component of the velocity. Several algorithms have therefore been developed to reconstruct the transverse components from observed continuum images or magnetograms. We compare the space and time averages of horizontal velocity fields in the photosphere inferred from pairs of consecutive intensitygrams by the LCT, FLCT, and CST methods and the DeepVel neural network in order to identify the method that is best suited for generating synthetic observations to be used for data assimilation. The Stein and Nordlund (Astrophys. J. Lett.753, L13, 2012) magnetoconvection simulation is used to generate synthetic SDO/HMI intensitygrams and reference flows to train DeepVel. Inferred velocity fields show that DeepVel performs best at subgranular and granular scales and is second only to FLCT at mesogranular and supergranular scales.  相似文献   

13.
14.
Investigations of the zodiacal dust cloud give evidence for a significant contribution of asteroidal dust to the interplanetary dust cloud, a result which can now be compared to measurements of the ULYSSES dust detector during its passage of the asteroid belt. Especially we discuss the ULYSSES data with respect to the IRAS dust bands and consider geometric selection effects for the detector. From calculations of radiation pressure forces, we conclude that particles in the IRAS dust bands with massesm≥ 10−12g will stay in bound orbits after their release from asteroid fragmentation. This is already in the mass range (10−16–10−7g) of particles detectable with the dust detector onboard ULYSSES. The absence of these particles in the ULYSSES data cannot be explained exclusively in terms of their small detection probability. Thus we conclude that the size distribution of particles in the IRAS dust bands most probably cannot be continued to the submicrometer range. Concerning the global structure of the inner zodiacal cloud (i.e., about solar distancer< 3.5 AU) the ULYSSES data are not inconsistent with present models. Recent estimates of the total mass of the interplanetary cloud require a dust production rate of about 1014g/year of which a significant amount is assumed to result from the asteroids. Our estimate for the production of dust particles in an IRAS dust band, based on the assumption that the dust band results from a single destruction of an asteroid of 100 km size, yields a production rate of 1010g/year. Other models of the IRAS dust bands suggest production rates up to 1012g/year and also cannot provide a significant source of the dust cloud.  相似文献   

15.
16.
Based on previous site testing and satellite cloud data,Ali,Daocheng and Muztagh-ata have been selected as candidate sites for the Large Optical/Infrared Telescope(LOT) in China.We present the data collection,processing,management and quality analysis for our site testing based on using similar hardware.We analyze meteorological data,seeing,background light,cloud and precipitable water vapor data from 2017 March 10 to 2019 March 10.We also investigated the relative usefulness of our all-sky camera data in comparison to that from the meteorological TERRA satellite data based on a night-by-night comparison of the correlation and consistency between them.We find a 6% discrepancy arising from a wide range of factors.  相似文献   

17.
The orbital parameters of Cosmos 58 have been determined at 65 epochs from some 4500 observations, between March 1982 and September 1983, using the RAE orbit refinement program, PROP. During this time, the satellite passed slowly through 15th-order resonance, and the orbital inclination and eccentricity have been analysed. Six lumped 15th-order geopotential harmonic coefficients have been evaluated, with an accuracy equivalent to between 0.8 and 2.0cm in geoid height. Six 30th-order coefficients have also been determined, with accuracies between 2 and 7 cm in geoid height. The coefficients have been compared with those from the GEM 10B and 10C models. There is good agreement for nine of the twelve coefficients.  相似文献   

18.
The 3.6 Ma El'gygytgyn impact structure, located in northeast Chukotka in Arctic Russia, was largely formed in acidic volcanic rocks. The 18 km diameter circular depression is today filled with Lake El'gygytgyn (diameter of 12 km) that contains a continuous record of lacustrine sediments of the Arctic from the past 3.6 Myr. In 2009, El'gygytgyn became the focus of the International Continental Scientific Drilling Program (ICDP) in which a total of 642.4 m of drill core was recovered. Lithostratigraphically, the drill cores comprise lacustrine sediment sequences, impact breccias, and deformed target rocks. The impactite core was recovered from 316.08 to 517.30 meters below lake floor (mblf). Because of the rare, outstanding recovery, the transition zone, ranging from 311.47 to 317.38 m, between the postimpact lacustrine sediments and the impactite sequences, was studied petrographically and geochemically. The transition layer comprises a mixture of about 6 m of loose sedimentary and volcanic material containing isolated clasts of minerals and melt. Shock metamorphic effects, such as planar fractures (PFs) and planar deformation features (PDFs), were observed in a few quartz grains. The discoveries of silica diaplectic glass hosting coesite, kinked micas and amphibole, lechatelierite, numerous impact melt shards and clasts, and spherules are associated with the impact event. The occurrence of spherules, impact melt clasts, silica diaplectic glass, and lechatelierite, about 1 m below the onset of the transition, marks the beginning of the more coherent impact ejecta layer. The results of siderophile interelement ratios of the transition layer spherules give indications of the relative contribution of the meteoritical component.  相似文献   

19.
《Chinese Astronomy》1978,2(2):265-278
We have mesured and compared the temperature fluctuation in the air close to the ground for three different terrains, plain (Shahe), mountainous terrain (Xinglong) and water surface (Huairou). Both the average amplitude of the temperature fluctuation and the modulation transfer function were calculated and the results agreed qualitatively. The atmosphere over the water surface was found to be the most stable: the average amplitude at 4 meters above the ground by the Huairou reservoir is smaller than that at 40 meters height at either the mountain or the plain site. The average amplitude at the ground level is larger on the plain than on the mountain, but it also decreases faster with height on the plain so that above 30–40 m, the situation is reversed. We have studied the relative heights of the boundary layer and derived the optimal height for a solar optical observatory as follows: 15–20 m for Huairou by the water reservoir, 30–40 m for Xinglong in the mountains and 40–50 m for Shahe on the plane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号