首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The BIOWIN biodegradation models were evaluated for their suitability for regulatory purposes. BIOWIN includes the linear and non-linear BIODEG and MITI models for estimating the probability of rapid aerobic biodegradation and an expert survey model for primary and ultimate biodegradation estimation. Experimental biodegradation data for 110 newly notified substances were compared with the estimations of the different models. The models were applied separately and in combinations to determine which model(s) showed the best performance. The results of this study were compared with the results of other validation studies and other biodegradation models. The BIOWIN models predict not-readily biodegradable substances with high accuracy in contrast to ready biodegradability. In view of the high environmental concern of persistent chemicals and in view of the large number of not-readily biodegradable chemicals compared to the readily ones, a model is preferred that gives a minimum of false positives without a corresponding high percentage false negatives. A combination of the BIOWIN models (BIOWIN2 or BIOWIN6) showed the highest predictive value for not-readily biodegradability. However, the highest score for overall predictivity with lowest percentage false predictions was achieved by applying BIOWIN3 (pass level 2.75) and BIOWIN6.  相似文献   

2.
A novel mechanistic modeling approach has been developed that assesses chemical biodegradability in a quantitative manner. It is an expert system predicting biotransformation pathway working together with a probabilistic model that calculates probabilities of the individual transformations. The expert system contains a library of hierarchically ordered individual transformations and matching substructure engine. The hierarchy in the expert system was set according to the descending order of the individual transformation probabilities. The integrated principal catabolic steps are derived from set of metabolic pathways predicted for each chemical from the training set and encompass more than one real biodegradation step to improve the speed of predictions. In the current work, we modeled O2 yield during OECD 302 C (MITI I) test. MITI-I database of 532 chemicals was used as a training set. To make biodegradability predictions, the model only needs structure of a chemical. The output is given as percentage of theoretical biological oxygen demand (BOD). The model allows for identifying potentially persistent catabolic intermediates and their molar amounts. The data in the training set agreed well with the calculated BODs (r2 = 0.90) in the entire range i.e. a good fit was observed for readily, intermediate and difficult to degrade chemicals. After introducing 60% ThOD as a cut off value the model predicted correctly 98% ready biodegradable structures and 96% not ready biodegradable structures. Crossvalidation by four times leaving 25% of data resulted in Q2 = 0.88 between observed and predicted values. Presented approach and obtained results were used to develop computer software for biodegradability prediction CATABOL.  相似文献   

3.

A novel mechanistic modeling approach has been developed that assesses chemical biodegradability in a quantitative manner. It is an expert system predicting biotransformation pathway working together with a probabilistic model that calculates probabilities of the individual transformations. The expert system contains a library of hierarchically ordered individual transformations and matching substructure engine. The hierarchy in the expert system was set according to the descending order of the individual transformation probabilities. The integrated principal catabolic steps are derived from set of metabolic pathways predicted for each chemical from the training set and encompass more than one real biodegradation step to improve the speed of predictions. In the current work, we modeled O 2 yield during OECD 302 C (MITI I) test. MITI-I database of 532 chemicals was used as a training set. To make biodegradability predictions, the model only needs structure of a chemical. The output is given as percentage of theoretical biological oxygen demand (BOD). The model allows for identifying potentially persistent catabolic intermediates and their molar amounts. The data in the training set agreed well with the calculated BODs ( r 2 =0.90) in the entire range i.e. a good fit was observed for readily, intermediate and difficult to degrade chemicals. After introducing 60% ThOD as a cut off value the model predicted correctly 98% ready biodegradable structures and 96% not ready biodegradable structures. Crossvalidation by four times leaving 25% of data resulted in Q 2 =0.88 between observed and predicted values. Presented approach and obtained results were used to develop computer software for biodegradability prediction CATABOL.  相似文献   

4.
In Europe, REACH legislation encourages the use of alternative in silico methods such as (Q)SAR models. According to the recent progress of Chemical Substances Control Law (CSCL) in Japan, (Q)SAR predictions are also utilized as supporting evidence for the assessment of bioaccumulation potential of chemicals along with read across. Currently, the effective use of read across and QSARs is examined for other hazards, including biodegradability. This paper describes the results of external validation and improvement of CATALOGIC 301C model based on more than 1000 tested new chemical substances of the publication schedule under CSCL. CATALOGIC 301C model meets all REACH requirements to be used for biodegradability assessment. The model formalism built on scientific understanding for the microbial degradation of chemicals has a well-defined and transparent applicability domain. The model predictions are adequate for the evaluation of the ready degradability of chemicals.  相似文献   

5.
Biodegradation is an important mechanism for eliminating xenobiotics by biotransforming them into simple organic and inorganic products. Faced with the ever growing number of chemicals available on the market, structure–biodegradation relationship (SBR) and quantitative structure–biodegradation relationship (QSBR) models are increasingly used as surrogates of the biodegradation tests. Such models have great potential for a quick and cheap estimation of the biodegradation potential of chemicals. The Estimation Programs Interface (EPI) Suite? includes different models for predicting the potential aerobic biodegradability of organic substances. They are based on different endpoints, methodologies and/or statistical approaches. Among them, Biowin 5 and 6 appeared the most robust, being derived from the largest biodegradation database with results obtained only from the Ministry of International Trade and Industry (MITI) test. The aim of this study was to assess the predictive performances of these two models from a set of 356 chemicals extracted from notification dossiers including compatible biodegradation data. Another set of molecules with no more than four carbon atoms and substituted by various heteroatoms and/or functional groups was also embodied in the validation exercise. Comparisons were made with the predictions obtained with START (Structural Alerts for Reactivity in Toxtree). Biowin 5 and Biowin 6 gave satisfactorily prediction results except for the prediction of readily degradable chemicals. A consensus model built with Biowin 1 allowed the diminution of this tendency.  相似文献   

6.
Abstract

On behalf of the Umweltbundesamt the Fraunhofer Gesellschaft has developed a software system (SAR-system) comprising more than 90 estimation models for endpoints relevant in environmental risk assessment. These estimation models are based on the approach of quantitative structure-activity relationships (QSAR). All models were checked for their validity and application range. In the last months the Umweltbundesamt started to test the applicability of some models concerning the endpoints fish acute toxicity, daphnia acute toxicity and ready (i.e., ultimate) biodegradability in the daily routine of the notification procedure. For testing these models the corresponding confidential data given in the dossiers of substances notified 1993 in Germany, were used. We were able to make calculations for 36% of the notified substances. For the remaining 64% of the chemicals it was impossible to accomplish SAR estimations due to several reasons, e.g., ionic structure of the compounds. Different results for the applicability of the mentioned endpoints are obtained. The predictions of the fish and Daphnia toxicity are in sufficient agreement with the experimental results, in case of the fish toxicity we receive 58% agreement, for the Daphnia toxicity 56% The corresponding values which were obtained in the US EPA/E.C. Joint Project on the evaluation of (quantitative) structure activity relationships were 82.3% and 70.9% About 300 different models were used for the calculations of these endpoints within the framework of the EPA/EC project. The SAR-system presented here contains 8 models for estimating the fish toxicity and 6 models for the Daphnia toxicity. For the prediction of the biodegradability the results obtained with the SAR-system are rather poor and have to be improved. Meanwhile the SAR-system is commercially available and can be ordered at the Fraunhofer Institute for Environmental Chemistry and Ecotoxicology, Schmallenberg (Germany).  相似文献   

7.
环境致癌物可诱发人类或哺乳动物体内的肿瘤,建立环境致癌物的计算机预测模型对环境风险评价和生态安全具有重要的意义.通过构建了3780个化合物的数据集,随机选取其中3024个作为训练集,其余756个作为外部验证集;基于定量构-效关系(QSAR)方法,采用逐步判别分析和主成分分析建立数学模型.结果表明训练集非致癌物预测正确率为86.0%,可能致癌物的预测正确率为88.O%,而采用主成分建模时,非致癌物和可能致癌物的预测正确率分别为74.2%和73.1%.说明逐步判别分析法的结果优于主成分判别分析.同时确定了可能致癌物和非致癌物的分子结构参数,阐明了两者结构差异.以上结果为预测和评估环境致癌物提供参考依据.  相似文献   

8.
9.
10.
Environmental endocrine disrupting chemicals(EDCs) or environmental estrogens pose severe healthhazard to wildlife and humans. They are believed to bethe main cause of the weakening activity and secretionof sex hormone, sperm declination, abnormal repro-d…  相似文献   

11.
This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.  相似文献   

12.
13.
External validation of the biodegradability prediction model CATABOL was conducted using test data of 338 existing chemicals and 1123 new chemicals under the Japanese Chemical Substances Control Law. CATABOL predicts that 1089 chemicals will have a BOD < 60% while 925 (85%) actually have an observed BOD<60%. The percentage of chemicals with an observed BOD value <60% tends to increase as the predicted BOD values decrease. In contrast, 340 chemicals were predicted to have a BOD > or = 60% and 234 (69%) actually had an observed BOD > or = 60%. The prediction of poor biodegradability was more accurate than the predictions of high biodegradability. The features of chemical structures affecting CATABOL predictability were also investigated.  相似文献   

14.
External validation of the biodegradability prediction model CATABOL was conducted using test data of 338 existing chemicals and 1123 new chemicals under the Japanese Chemical Substances Control Law. CATABOL predicts that 1089 chemicals will have a BOD?<?60% while 925 (85%) actually have an observed BOD<60%. The percentage of chemicals with an observed BOD value <60% tends to increase as the predicted BOD values decrease. In contrast, 340 chemicals were predicted to have a BOD?≥?60% and 234 (69%) actually had an observed BOD?≥?60%. The prediction of poor biodegradability was more accurate than the predictions of high biodegradability. The features of chemical structures affecting CATABOL predictability were also investigated.  相似文献   

15.
Evidence suggests that environmental exposure to estrogen-like compounds can cause adverse effects in humans and wildlife. The Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) has advised screening of 87,000 compounds in the interest of human safety. This may best be accomplished by pre-screening using quantitative structure-activity relationship (QSAR) modelling. The present study aimed to develop in silico QSARs based on natural, semi-synthetic, synthetic, and phytoestrogens, to predict the potential estrogenic toxicity of pesticides. A diverse set of 170 compounds including steroidal-, synthetic- and phytoestrogens, as well as pesticides was used to construct the QSAR models using artificial neural networks (ANNs). Mean correlation coefficients between experimentally measured and predicted binding affinities were all greater than 0.7 and models had few false negative results, an important consideration for screening tools. This study demonstrated the utility of ANNs as QSAR models for pre-screening of potential endocrine disruptors.  相似文献   

16.
Biodegradation plays a key role in the environmental risk assessment of organic chemicals. The need to assess biodegradability of a chemical for regulatory purposes supports the development of a model for predicting the extent of biodegradation at different time frames, in particular the extent of ultimate biodegradation within a ‘10?day window’ criterion as well as estimating biodegradation half-lives. Conceptually this implies expressing the rate of catabolic transformations as a function of time. An attempt to correlate the kinetics of biodegradation with molecular structure of chemicals is presented. A simplified biodegradation kinetic model was formulated by combining the probabilistic approach of the original formulation of the CATABOL model with the assumption of first order kinetics of catabolic transformations. Nonlinear regression analysis was used to fit the model parameters to OECD 301F biodegradation kinetic data for a set of 208 chemicals. The new model allows the prediction of biodegradation multi-pathways, primary and ultimate half-lives and simulation of related kinetic biodegradation parameters such as biological oxygen demand (BOD), carbon dioxide production, and the nature and amount of metabolites as a function of time. The model may also be used for evaluating the OECD ready biodegradability potential of a chemical within the ‘10-day window’ criterion.  相似文献   

17.
With metabolism being one of the main routes of drug elimination from the body (accounting for removal of around 75% of known drugs), it is crucial to understand and study metabolic stability of drug candidates. Metabolically unstable compounds are uncomfortable to administer (requiring repetitive dosage during therapy), while overly stable drugs increase risk of adverse drug reactions. Additionally, biotransformation reactions can lead to formation of toxic or pharmacologically active metabolites (either less‐active than parent drug, or even with different action). There were numerous approaches in estimating metabolic stability, including in vitro, in vivo, in silico, and high‐throughput screening to name a few. This review aims at describing separation techniques used in in vitro metabolic stability estimation, as well as chemometric techniques allowing for creation of predictive models which enable high‐throughput screening approach for estimation of metabolic stability. With a very low rate of drug approval, it is important to understand in silico methods that aim at supporting classical in vitro approach. Predictive models that allow assessment of certain biological properties of drug candidates allow for cutting not only cost, but also time required to synthesize compounds predicted to be unstable or inactive by in silico models.  相似文献   

18.
Biodegradation plays a key role in the environmental risk assessment of organic chemicals. The need to assess biodegradability of a chemical for regulatory purposes supports the development of a model for predicting the extent of biodegradation at different time frames, in particular the extent of ultimate biodegradation within a '10 day window' criterion as well as estimating biodegradation half-lives. Conceptually this implies expressing the rate of catabolic transformations as a function of time. An attempt to correlate the kinetics of biodegradation with molecular structure of chemicals is presented. A simplified biodegradation kinetic model was formulated by combining the probabilistic approach of the original formulation of the CATABOL model with the assumption of first order kinetics of catabolic transformations. Nonlinear regression analysis was used to fit the model parameters to OECD 301F biodegradation kinetic data for a set of 208 chemicals. The new model allows the prediction of biodegradation multi-pathways, primary and ultimate half-lives and simulation of related kinetic biodegradation parameters such as biological oxygen demand (BOD), carbon dioxide production, and the nature and amount of metabolites as a function of time. The model may also be used for evaluating the OECD ready biodegradability potential of a chemical within the '10-day window' criterion.  相似文献   

19.
Public domain and commercial in silico tools were compared for their performance in predicting the skin sensitization potential of chemicals. The packages were either statistical based (Vega, CASE Ultra) or rule based (OECD Toolbox, Toxtree, Derek Nexus). In practice, several of these in silico tools are used in gap filling and read-across, but here their use was limited to make predictions based on presence/absence of structural features associated to sensitization. The top 400 ranking substances of the ATSDR 2011 Priority List of Hazardous Substances were selected as a starting point. Experimental information was identified for 160 chemically diverse substances (82 positive and 78 negative). The prediction for skin sensitization potential was compared with the experimental data. Rule-based tools perform slightly better, with accuracies ranging from 0.6 (OECD Toolbox) to 0.78 (Derek Nexus), compared with statistical tools that had accuracies ranging from 0.48 (Vega) to 0.73 (CASE Ultra – LLNA weak model). Combining models increased the performance, with positive and negative predictive values up to 80% and 84%, respectively. However, the number of substances that were predicted positive or negative for skin sensitization in both models was low. Adding more substances to the dataset will increase the confidence in the conclusions reached. The insights obtained in this evaluation are incorporated in a web database www.asopus.weebly.com that provides a potential end user context for the scope and performance of different in silico tools with respect to a common dataset of curated skin sensitization data.  相似文献   

20.
Structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR), collec- tively referred to as (Q)SARs, play an important role in ecological risk assessment (ERA) of organic chemicals. (Q)SARs can fill the data gap for physical-chemical, environmental behavioral and ecotoxicological parameters of organic compounds; they can decrease experimental expenses and reduce the extent of experimental testing (especially animal testing); they can also be used to assess the uncertainty of the experimental data. With the development for several decades, (Q)SARs in envi- ronmental sciences show three features: application orientation, multidisciplinary integration, and in- telligence. Progress of (Q)SAR technology for ERA of toxic organic compounds, including endpoint selection and mathematic methods for establishing simple, transparent, easily interpretable and portable (Q)SAR models, is reviewed. The recent development on defining application domains and diagnosing outliers is summarized. Model characterization with respect to goodness-of-fit, stability and predictive power is specially presented. The purpose of the review is to promote the development of (Q)SARs orientated to ERA of organic chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号