首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim KM  Choi BJ  Lee MH  Kim GH  Song SJ  Seok JY  Yoon JH  Han S  Hwang CS 《Nanotechnology》2011,22(25):254010
The detailed mechanism of electronic bipolar resistance switching (BRS) in the Pt/TiO(2)/Pt structure was examined. The conduction mechanism analysis showed that the trap-free and trap-mediated space-charge-limited conduction (SCLC) governs the low and high resistance state of BRS, respectively. The SCLC was confirmed by fitting the current-voltage characteristics of low and high resistance states at various temperatures. The BRS behavior originated from the asymmetric potential barrier for electrons escaping from, and trapping into, the trap sites with respect to the bias polarity. This asymmetric potential barrier was formed at the interface between the trap layer and trap-free layer. The detailed parameters such as trap density, and trap layer and trap-free layer thicknesses in the electronic BRS were evaluated. This showed that the degradation in the switching performance could be understood from the decrease and modified distribution of the trap densities in the trap layer.  相似文献   

2.
We have presented a study of the bipolar resistance switching characteristics in the Ag/ZnO/Pt cell. This switching is accompanied by a change in intensity of the photoluminescence emission at 3.33?eV which is attributed to zinc vacancy related transitions in ZnO film. Besides voltage-driven resistance switching phenomena, a transition from a high-resistance state to a lower one is observed under laser illumination at low temperature. These results demonstrate that the bipolar resistance switching can originate due to an electron trapping/de-trapping process at zinc-vacancy defects localized in the interface layer. The Mott metal-insulator transition is proposed as a possible mechanism of the memory effect.  相似文献   

3.
40 nm thick amorphous ZnO thin films were deposited by radio frequency magnetron sputtering at room temperature and asymmetric electrical switching characteristics are observed in the macroscopic symmetric Pt/ZnO/Pt structure. The crystal structure was examined by X-ray diffraction (XRD). The chemical bonding states of ZnO resistive switching layer was investigated by X-ray photoelectron spectroscopy (XPS). Keithley 4200 semiconductor characterization system was used to measure the current-voltage (I-V) characteristics of the fabricated devices. The results reveal that a reversible resistive switching behavior between the high resistance state and the low resistance state with rectifying effects can be repeated for more than 100 dc cycles. This asymmetric electrical behavior is thought to be related to the naturally self-formed PtOx between ZnO film and the Pt bottom electrode, which introduces an energy barrier when electrons flow from top electrode towards the bottom electrode. The model of Pt/ZnO/Pt memory cell is expected to be able to alleviate the misreading error in cross-point array for high density integrations.  相似文献   

4.
5.
6.
Platinum/carbon doped titanium dioxide/single-walled carbon nanotubes (Pt/C/TiO2/SWNTs) were successfully prepared by blending method. These composite catalysts were found to exhibit an anatase TiO2 structure with uniform Pt/C and the existence of SWNTs can be confirmed by transmission electron microscopy (TEM). The composite of Pt/C with TiO2/SWNTs could improve an enhancement in catalytic properties upon applying TiO2/SWNTs as catalyst support. The catalytic oxidation of methanol of Pt/C doped TiO2/SWNTs is found to be higher as compared to the undoped and Pt/C doped materials.  相似文献   

7.
As conventional flash memory is approaching its fundamental scaling limit, there is an urgent demand for an alternative nonvolatile memory technology at present. Resistance-switching random access memory has attracted extensive interests due to its nonvolatile nature, good scalability, and simple structure. In this work, TiN/ZnO:Mn/Pt junctions, which employ a conductive compound TiN as the top electrode to replace regular metal electrodes, were fabricated and investigated for nonvolatile resistive memory applications. These junctions exhibit bistable resistance state at room temperature, and the devices can be reproducibly switched between the two resistance states by applying bidirectional voltage biases. Moreover, both resistance states are demonstrated to retain for more than 10(4) s without electrical power, demonstrating a nonvolatile nature of the memory device. The mechanism of resistance switching effects in TiN/ZnO:Mn/Pt junctions is interpreted in terms of the drift of oxygen vacancies and the resultant formation/annihilation of local conductive channels through ZnO:Mn/Pt Schottky barrier.  相似文献   

8.
9.
SB Lee  HK Yoo  K Kim  JS Lee  YS Kim  S Sinn  D Lee  BS Kang  B Kahng  TW Noh 《Nanotechnology》2012,23(31):315202
To initiate resistance switching phenomena, it is usually necessary to apply a strong electric field to a sample. This forming process poses very serious obstacles in real nanodevice applications. In unipolar resistance switching (URS), it is well known that the forming originates from soft dielectric breakdown. However, the forming in bipolar resistance switching (BRS) is poorly understood. In this study, we investigated the forming processes in Pt/Ta?O?/TaOx/Pt and Pt/TaOx/Pt nanodevices, which showed BRS and URS, respectively. By comparing the double- and single-layer systems, we were able to observe differences in the BRS and URS forming processes. Using computer simulations based on an 'interface-modified random circuit breaker network model', we could explain most of our experimental observations. This success suggests that the BRS forming in our Pt/Ta?O?/TaOx/Pt double-layer system can occur via two processes, i.e., polarity-dependent resistance switching in the Ta?O? layer and soft dielectric breakdown in the TaOx layer. This forming mechanism can be used to improve the performance of BRS devices. For example, we could improve the endurance properties of Pt/Ta?O?/TaOx/Pt cells by using a small forming voltage.  相似文献   

10.
We report the observation of two resistance switching modes in certain 50 nm × 50 nm crossbar TiO(2) memristive devices that have been electroformed with a low-current process. The two switching modes showed opposite switching polarities. The intermediate state was shared by both modes (the ON state of the high-resistance mode or the OFF state of the low-resistance mode) and exhibited a relaxation to a more resistive state, including an initial transient decay. The activation energies of such a decay and ON-switching to the intermediate state were determined to be 50-210 meV and 1.1 eV, respectively. Although they are attributed to the coexistence of charge trapping and ionic motion, the ionic motion dominates in both switching modes. Our results indicate that the two switching modes in our system correspond to different switching layers adjacent to the interfaces at the top and bottom electrodes.  相似文献   

11.
The 80-nm-thickness BaTiO3 (BT) thin film was prepared on the Pt/Ti/SiO2/Si substrate by the RF magnetron sputtering technique. The Pt/BT/Pt/Ti/SiO2/Si structure was investigated using X-ray diffraction and scanning electron microscopy. The current-voltage characteristic measurements were performed. The bipolar resistive switching behavior was found in the Pt/BT/Pt cell. The current-voltage curves were well fitted in different voltage regions at the high resistance state (HRS) and the low resistance state (LRS), respectively. The conduction mechanisms are concluded to be Ohmic conduction and Schottky emission at the LRS, while space-charge-limited conduction and Poole-Frenkel emission at the HRS. The electroforming and switching processes were explained in terms of the valence change mechanism, in which oxygen vacancies play a key role in forming conducting paths.  相似文献   

12.
The thermal stability of Ti/Pt/Au Schottky contacts on n-GaAs with Ti films 0–60 nm is investigated. The contacts with Ti films as small as 10 nm remain thermally stable with annealing up to 400°C. The changes induced by thermal treatment in the electrical characteristics of the contacts are correlated with the Rutherford backscattering and microscopic analysis of the annealed samples. It shows profuse interdiffusion and interfacial reaction with 300°C anneal for the GaAs/Pt/Au system. It has been found that introducing the Ti film between GaAs and Pt/Au, the interdiffusion of Pt and Au is also prevented. These results are useful for reducing the gate metallisation resistance of metal semiconductor field effect transistors.  相似文献   

13.
A distinct unipolar but single-polarity resistive switching behavior is observed in a TiO(x)/Pt/TiO(x) trilayer structure, formed by thermal oxidation of a Ti/Pt/Ti stack. As a comparison, a memory device with a single TiO(x) active layer (without addition of Pt midlayer) is also fabricated but it cannot perform resistive switching. Energy band diagrams are illustrated to realize the modulation of Schottky barrier junctions and current conduction in TiO(x)-based devices under various biasing polarities. Introduction of the Pt midlayer creates two additional Schottky barriers, which mediate the band bending potential at each metal-oxide interface and attains a rectifying current conduction at the high-resistance state. The rectifying conduction behavior is also observed with an AFM-tip as the top electrode, which implies the rectifying property is still valid when miniaturizing the device to nanometer scale. The current rectification consequently leads to a single-polarity, unipolar resistive switching and electrically rewritable performance for the TiO(x)/Pt/TiO(x) device.  相似文献   

14.
《Materials Research Bulletin》2013,48(4):1347-1351
This paper describes a novel synthesis method of stabilizer-free Pt/TiO2 composite nanoparticles using electron beam irradiation. The chemical compositions were analyzed by inductively coupled plasma-atomic emission spectroscopy. The microstructures of the samples were observed by using transmission electron microscope. Pt nanoparticles with the sizes of 2–4 nm were deposited on TiO2 without any use of stabilizers. The concentrations of Pt ions and 2-propanol notably affected the size and shape of Pt nanoparticles. Their reactions of preferential CO oxidation were measured in temperature region from 60 to 140 °C. The Pt/TiO2 catalyst with spherical Pt nanoparticles exhibited a 67% of CO conversion rate and 100% of selectivity at a low temperature of 60 °C.  相似文献   

15.
We have studied the stability of the resistive switching process in the Al/(In2O3)0.9(SnO2)0.1/TiO2 assembly grown by atomic layer deposition. Besides electrical characterization the effect of electric field on the atomic electronic structure of the TiO2 layer was studied using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The region of the current instability in the I-V characteristics was revealed. Presumably this current instability is supported by the amorphous structure of the TiO2 film but is initiated by the surface morphology of the Al substrate. A formation of the O2 molecules was established which occurs specifically in the region of the current instability that is a result of electrical Joule heating manifestation.  相似文献   

16.
The rutile TiO2 thin film involving two different top electrodes (Pt and Al) clearly shows the unipolar and bipolar resistive switching transitions which are dependent on the degree of redox properties at TiO2 layer-electrode interfaces. Detailed current level analysis coupled with Auger electron spectroscopy measurements of the Pt/TiO2/Pt and Al/TiO2/Pt structures in the on/off switching states revealed the implication of oxygen ion migration induced chemical reaction at the Al-TiO2 interfaces. Therefore, it is expected that the bipolar transition nature of resistive switching with an Al electrode is the resulting formation of a thin AlOx layer due to redox reaction at Al-TiO2 layer interfaces.  相似文献   

17.
Solar-driven CO2 conversion into valuable fuels is a promising strategy to alleviate the energy and environmental issues. However, inefficient charge separation and transfer greatly limits the photocatalytic CO2 reduction efficiency. Herein, single-atom Pt anchored on 3D hierarchical TiO2-Ti3C2 with atomic-scale interface engineering is successfully synthesized through an in situ transformation and photoreduction method. The in situ growth of TiO2 on Ti3C2 nanosheets can not only provide interfacial driving force for the charge transport, but also create an atomic-level charge transfer channel for directional electron migration. Moreover, the single-atom Pt anchored on TiO2 or Ti3C2 can effectively capture the photogenerated electrons through the atomic interfacial Pt O bond with shortened charge migration distance, and simultaneously serve as active sites for CO2 adsorption and activation. Benefiting from the synergistic effect of the atomic interface engineering of single-atom Pt and interfacial Ti O Ti, the optimized photocatalyst exhibits excellent CO2-to-CO conversion activity of 20.5 µmol g−1 h−1 with a selectivity of 96%, which is five times that of commercial TiO2 (P25). This work sheds new light on designing ideal atomic-scale interface and single-atom catalysts for efficient solar fuel conversation.  相似文献   

18.
采用电化学阳极氧化法和浸渍一提拉法成功制备了高度有序的Pt改性TiO2纳米管(Pt/TNT)阵列电极,并运用场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、x射线光电子能谱分析(XPS)、紫外可见漫反射光谱(UV—VisDRS)等手段对其进行表征,考察了其光电化学性质,并研究了该电极光电催化降解甲基橙染料废水的催化性能及其稳定性.结果表明,Pt的均匀负载成功地将TNT阵列电极的光响应范围拓宽到可见光区域,光电流密度达到负载前TNT阵列电极的18倍;Pt/TNT阵列电极对甲基橙的降解符合拟一级动力学,其反应速率常数为TNT阵列电极的3倍,这主要归结于Pt与TiO:间的肖特基势垒和纳米管阵列结构带来的较大比表面积、有效的光生电子和空穴的分离与传输和宽的光响应范围.  相似文献   

19.
Hur JH  Kim KM  Chang M  Lee SR  Lee D  Lee CB  Lee MJ  Kim YB  Kim CJ  Chung UI 《Nanotechnology》2012,23(22):225702
We report a physical model for multilevel switching in oxide-based bipolar resistive memory (ReRAM). To confirm the validity of the model, we conduct experiments with tantalum-oxide-based ReRAM of which multi-resistance levels are obtained by reset voltage modifications. It is also noticeable that, in addition to multilevel switching capability, the ReRAM exhibits extremely different switching timescales, i.e. of the order of 10(-7)?s to 10(0)?s, with regard to reset voltages of only a few volts difference which can be well explained by our model. It is demonstrated that with this simple model, multilevel switching behavior in oxide bipolar ReRAM can be described not only qualitatively but also quantitatively.  相似文献   

20.
In this study,resistive random-access memory (RRAM)-based crossbar arrays with a memristor W/TiO2/HfO2/TaN structure were fabricated through atomic layer deposi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号