首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The UNEP in its regional seas program in 1989 has included Pakistan in a group of countries which are vulnerable to the impact of rising sea level. If the present trend of sea level rise (SLR) at Karachi continues, in the next 50 years the sea level rise along the Pakistan Coast will be 50 mm (5 cm). Since the rising rates of sea level at Karachi are within the global range of 1-2 mm/year, the trends may be treated as eustatic SLR. Historical air temperature and sea surface temperature (SST) data of Karachi also show an increasing pattern and an increasing trend of about 0.67°C has been registered in the air temperature over the last 35 years, whereas the mean SST in the coastal waters of Karachi has also registered an increasing trend of about 0.3°C in a decade. Sindh coastal zone is more vulnerable to sea level rise than Baluchistan coast, as uplifting of the coast by about 1-2 mm/year due to subduction of Indian Ocean plate is a characteristic of Baluchistan coast. Within the Indus deltaic creek system, the area nearby Karachi is more vulnerable to coastal erosion and accretion than the other deltaic region, mainly due to human activities together with natural phenomena such as wave action, strong tidal currents, and rise in sea level. Therefore, The present article deals mainly with the study of dynamical processes such as erosion and accretion associated with sea level variations along the Karachi coast and surrounding Indus deltaic coastline. The probable beach erosion in a decade along the sandy beaches of Karachi has been estimated. The estimates show that 1.1 mm/year rise in sea level causes a horizontal beach loss of 110 mm per year. Therefore, coast eroded with rise in sea level at Karachi and surrounding sandy beaches would be 1.1 m during a period of next 10 years. The northwestern part of Indus delta, especially the Gizri and Phitti creeks and surrounding islands, are most unstable. Historical satellite images are used to analyze the complex pattern of sediment movements, the change in shape of coastline, and associated erosion and accretion patterns in Bundal and Buddo Islands. The significant changes in land erosion and accretion areas at Bundal and Buddo Islands are evident and appear prominently in the images. A very high rate of accretion of sediments in the northwestern part of Buddo Island has been noticed. In the southwest monsoon season the wave breaking direction in both these islands is such that the movement of littoral drift is towards west. Erosion is also taking place in the northeastern and southern part of Bundal Island. The erosion in the south is probably due to strong wave activities and in the northeast is due to strong tidal currents and seawater intrusion. Accretion takes place at the northwest and western parts of Bundal Island. By using the slope of Indus delta, sea encroachment and the land area inundation with rising sea level of 1 m and 2 m have also been estimated.  相似文献   

2.
Oceanic Islands in the Pacific and Indian Oceans have extremely small land areas, usually less than 500 km2, with maximum height about 4 m above sea level. The Republic of Maldives is an independent island nation in the Indian Ocean south of Sri Lanka which stretches vertically in the Indian Ocean from 07° 06'N - 0° 42'S. The land area of this island country is about 300 km2, and none of Maldives' 1190 islands has an elevation more than 3 m above sea level. In fact the Maldives has the distinction of being the flattest country on earth, making it extremely vulnerable to the effects of global warming. Of the south Asian countries, the Maldives is the most vulnerable nation, facing severe consequences as a result of global warming and sea level rise (SLR). Because of their obvious vulnerability to SLR, the Government of Maldives is very much concerned about climate change. As global warming and the related SLR is an important integrated environmental issue, the need of the hour is to monitor and assess these changes. The present article deals mainly with the analysis of the tidal and Sea Surface Temperature (SST) data observed at Male and Gan stations along the Maldives coast in the northern and southern hemispheres, respectively. The objective of the analysis is to study the trends of these parameters. Trend analysis is also performed on the corresponding air temperature data of both stations. The results show that Maldives coastal sea level is rising in the same way (rising trend) as the global sea level. The mean tidal level at Male has shown an increasing trend of about 4.1 mm/year.Similarly at Gan, near the equator,it has registered a positive trend of about 3.9 mm/year.Sea level variations are the manifestations of various changes that are taking place in the Ocean-Atmosphere system. Therefore, the variations in SST and air temperature are intimately linked to sea level rise. It is found that SST and air temperature have also registered an increasing trend at both stations. The evidence of rising trends suggest that careful future monitoring of these parameters is very much required. Tropical cyclones normally do not affect the Maldives coast. However, due to its isolated location, the long fetches in association with swells generated by storms, that originated in the far south have resulted in flooding. Thus the rising rate of sea level with high waves and flat topography have increased the risk of flooding and increased the rate of erosion and alteration of beaches.  相似文献   

3.
Oceanic Islands in the Pacific and Indian Oceans have extremely small land areas, usually less than 500 km2, with maximum height about 4 m above sea level. The Republic of Maldives is an independent island nation in the Indian Ocean south of Sri Lanka which stretches vertically in the Indian Ocean from 07° 06'N - 0° 42'S. The land area of this island country is about 300 km2, and none of Maldives' 1190 islands has an elevation more than 3 m above sea level. In fact the Maldives has the distinction of being the flattest country on earth, making it extremely vulnerable to the effects of global warming. Of the south Asian countries, the Maldives is the most vulnerable nation, facing severe consequences as a result of global warming and sea level rise (SLR). Because of their obvious vulnerability to SLR, the Government of Maldives is very much concerned about climate change. As global warming and the related SLR is an important integrated environmental issue, the need of the hour is to monitor and assess these changes. The present article deals mainly with the analysis of the tidal and Sea Surface Temperature (SST) data observed at Male and Gan stations along the Maldives coast in the northern and southern hemispheres, respectively. The objective of the analysis is to study the trends of these parameters. Trend analysis is also performed on the corresponding air temperature data of both stations. The results show that Maldives coastal sea level is rising in the same way (rising trend) as the global sea level. The mean tidal level at Male has shown an increasing trend of about 4.1 mm/year.Similarly at Gan, near the equator,it has registered a positive trend of about 3.9 mm/year.Sea level variations are the manifestations of various changes that are taking place in the Ocean-Atmosphere system. Therefore, the variations in SST and air temperature are intimately linked to sea level rise. It is found that SST and air temperature have also registered an increasing trend at both stations. The evidence of rising trends suggest that careful future monitoring of these parameters is very much required. Tropical cyclones normally do not affect the Maldives coast. However, due to its isolated location, the long fetches in association with swells generated by storms, that originated in the far south have resulted in flooding. Thus the rising rate of sea level with high waves and flat topography have increased the risk of flooding and increased the rate of erosion and alteration of beaches.  相似文献   

4.
The French Transportable Laser Ranging System (FTLRS) was deployed in the calibration site of satellite radar altimeters in Corsica over the 2002 and 2005 campaigns. The paper describes the different steps of SLR data processing. The average arcs RMS obtained are about 1–2 cm for Lageos-1&;-2, Starlette and Stella satellites; it is shown that the best results of satellite orbits determination and geocentric positioning are obtained with Eigen-Grace03s gravity model. The difference of FTLRS absolute 3D positioning, between 2002 and 2005, of about 7.7 mm (i.e., 2.6 mm/yr) is less than residual errors of ITRF2005 velocities (of about 4.3 mm/yr).  相似文献   

5.
Maldives, a South Asian small island nation in the northern part of the Indian Ocean is extremely vulnerable to the impacts of Sea Level Rise (SLR) due to its low altitude from the mean sea level. This artricle attempts to estimate the recent rates of SLR in Maldives during different seasons of the year with the help of existing tidal data recorded in the Maldives coast. Corresponding Sea Surface Temperature (SST) trends, utilizing reliable satellite climatology, have also been obtained. The relationships between the SST and mean sea level have been comprehensively investigated. Results show that recent sea level trends in the Maldives coast are very high. At Male, the capital of the Republic of Maldives, the rising rates of Mean Tidal Level (MTL) are: 8.5, 7.6, and 5.8 mm/year during the postmonsoon (October-December), Premonsoon (March-May) and southwest monsoon (June-September) seasons respectively. At Gan, a station very close to the equator, the increasing rate of MTL is maximum during the period from June to September (which is 6.2 mm/year). These rising trends in MTL along the Maldives coast are certainly alarming for this small developing island nation, which is hardly one meter above the mean sea level. Thus there is a need for careful monitoring of future sea level changes in the Maldives coast. The trends presented are based on the available time-series of MTL for the Maldives coast, which are rather short. These trends need not necessarily reflect the long-term scenario. SST in the Maldives coast has also registered significant increasing trend during the period from June to September. There are large seasonal variations in the SST trends at Gan but SST and MTL trends at Male are consistently increasing during all the seasons and the rising rates are very high. The interannual mode of variation is prominent both in SST as well as MTL. Annual profile of MTL along the Maldives coast is bimodal, having two maxima during April and July. The April Mode is by far the dominant one. The SST appears to be the main factor governing the sea level variations along the Maldives coast. The influence of SST and sea level is more near the equatorial region (i.e., at Gan). There is lag of about two months for the maximum influence of SST on the sea level. The correlation coefficient between the smoothed SST and mean tidal level at Gan with lag of two months is as high as ~ +0.8, which is highly significant. The corresponding correlation coefficients at Male with the lags of one and two months are +0.5 and +0.3, respectively. Thus, the important finding of the present work for the Maldives coast is the dominance of SST factor in sea level variation, especially near the region close to the equator.  相似文献   

6.
Bangladesh, one of the most densely populated countries in the world, is a victim of frequent natural calamities like tropical cyclones, tornadoes, floods, storm surges and droughts. Now the sea level rise (SLR) has also been included in these natural calamities. The SLR is likely to have greater impact on that part of Bangladesh having low topography and a wide flood plain. Since 21% of the population lives in the low coastal belt, any increase in sea level will be a problem of ominous proportion for Bangladesh. Since the cyclogenesis enhances over the Bay of Bengal during May and November, the sea level and sea surface temperature (SST) trends of these two months have been analyzed and calculated. The results of the selected stations one in the eastern coast and another in the western coast of Bangladesh show that Bangladesh coastal sea level is rising in the same way as the global sea level, but the magnitude is quite different. The difference in the behavior of sea level rise along the Bangladesh coast and the global trend may be due to the tectonic activity such as subsidence of the land. The mean tide level at Hiron Point (in Sunderbans) has shown an increasing trend of about 2.5 mm/year in May and 8.5 mm/year in November. Similarly near Cox?s Bazar (in the eastern coast of Bangladesh) it has registered a positive trend of about 4.3 mm/year in May and 10.9 mm/year in November. Thus the increment in the sea level along the Bangladesh coast during cyclone months is much more pronounced. In coastal waters near Hiron Point the SST has registered an increasing trend of about 1°C in May and 0.5°C in November during the 14-year period from 1985?1998. Near Cox?s Bazar, SST has shown a rising trend of about 0.8°C in May and about 0.4°C in November during the same 14-year period. The magnitude of SST trend is slightly more along the west coast. Any change in the frequency and intensity of tropical cyclones will have far reaching implications in the South Asian region. The rise in SST in the cyclone months seems to be correlated with the frequency and intensity of tropical cyclones. During these months, an increasing trend in the frequency and intensity of severe cyclones has been observed.  相似文献   

7.
Specific properties of the interannual sea level variations and annual tides in the Northwestern Pacific were studied. Several tide stations were monitored. The monthly mean sea level for the year of 1995 was analyzed at each tide station. A seismic event in 1995, some tectonic activity around the subject area, and the Kuroshio (the oceanic western boundary current) may possibly contaminate results which would have occurred from the astronomical annual tide alone.  相似文献   

8.
It is demonstrated that an along-track mean sea surface (MSS) model estimated with TOPEX altimeter data, including the large 1997-1998 El Niño event, is slightly less accurate than a MSS model calculated from less data where El Niño signals are small. The manner in which true sea level variability corrupts the estimation of MSS gradients is discussed. A model is proposed to reduce the error, based on scaling climate indices such as the Southern Oscillation Index, while accounting for phase shifts using a Hilbert transform. After modeling and removing the seasonal and interannual sea level variations, parameters to a plane MSS model are estimated using TOPEX altimeter data from January 1993 to June 2000. Results indicate an overall improvement over the earlier model based on four years of data, and no apparent degradation due to aliasing of sea level variability.  相似文献   

9.
Maldives, a South Asian small island nation in the northern part of the Indian Ocean is extremely vulnerable to the impacts of Sea Level Rise (SLR) due to its low altitude from the mean sea level. This artricle attempts to estimate the recent rates of SLR in Maldives during different seasons of the year with the help of existing tidal data recorded in the Maldives coast. Corresponding Sea Surface Temperature (SST) trends, utilizing reliable satellite climatology, have also been obtained. The relationships between the SST and mean sea level have been comprehensively investigated. Results show that recent sea level trends in the Maldives coast are very high. At Male, the capital of the Republic of Maldives, the rising rates of Mean Tidal Level (MTL) are: 8.5, 7.6, and 5.8 mm/year during the postmonsoon (October-December), Premonsoon (March-May) and southwest monsoon (June-September) seasons respectively. At Gan, a station very close to the equator, the increasing rate of MTL is maximum during the period from June to September (which is 6.2 mm/year). These rising trends in MTL along the Maldives coast are certainly alarming for this small developing island nation, which is hardly one meter above the mean sea level. Thus there is a need for careful monitoring of future sea level changes in the Maldives coast. The trends presented are based on the available time-series of MTL for the Maldives coast, which are rather short. These trends need not necessarily reflect the long-term scenario. SST in the Maldives coast has also registered significant increasing trend during the period from June to September. There are large seasonal variations in the SST trends at Gan but SST and MTL trends at Male are consistently increasing during all the seasons and the rising rates are very high. The interannual mode of variation is prominent both in SST as well as MTL. Annual profile of MTL along the Maldives coast is bimodal, having two maxima during April and July. The April Mode is by far the dominant one. The SST appears to be the main factor governing the sea level variations along the Maldives coast. The influence of SST and sea level is more near the equatorial region (i.e., at Gan). There is lag of about two months for the maximum influence of SST on the sea level. The correlation coefficient between the smoothed SST and mean tidal level at Gan with lag of two months is as high as ~ +0.8, which is highly significant. The corresponding correlation coefficients at Male with the lags of one and two months are +0.5 and +0.3, respectively. Thus, the important finding of the present work for the Maldives coast is the dominance of SST factor in sea level variation, especially near the region close to the equator.  相似文献   

10.
Interannual variations of sea level along the Bangladesh coast are quite pronounced and often dominate the long-term sea level trends that are taking place. The El Niño/Southern Oscillation (ENSO) induced variation is an important component of interannual mode of variations. The present article deals with the relationship between the sea level variations along the Bangladesh coast and the Southern Oscillation phenomenon. The mean tide level data of monsoon season (June to September) pertaining to Hiron Point (in Sundarbans) and Char Changa (on the mouth of Meghna River) have been analyzed and correlated to the Southern Oscillation Index (SOI). The annual variation of mean tide level in the coastal areas of Bangladesh reveals that the tide level reaches its peak during the monsoon season. The maximum tide level during the calendar year is recorded in August. Thus, it is not surprising that the inundation of the coastal belt of Bangladesh due to the floods is most common during the summer monsoon season, especially from July to September. Therefore, the sea level variations during the monsoon are of paramount importance to Bangladesh. The results of the present study show that both at Hiron Point and Char Changa there is a substantial difference between the mean tide level during the El Niño and La Niña monsoons. The mean tide level at Hiron Point is higher by about 5 cm during August of La Niña years as compared to that during the El Niño years. The difference at Char Changa, which is located at the mouth of Meghna River, is much higher. This is probably due to the increased fresh water discharge into the Meghna River during La Niña years. Thus at the time of crossing of a monsoon depression, the chances of widespread inundation are higher during a La Nin~a year as compared to that during an El Niño year. The Correlation Coefficients (CCs) between Mean Tide Levels (MTLs) at Hiron Point and Char Changa and the SOI during September (at the end of monsoon) are +0.33 and +0.39 respectively. These CCs are statistically significant at 90% and 95% levels, respectively. These results may find applications in the preparedness programs for combating sea level associated disasters in Bangladesh.  相似文献   

11.
Specific properties of the interannual sea level variations and annual tides in the Northwestern Pacific were studied. Several tide stations were monitored. The monthly mean sea level for the year of 1995 was analyzed at each tide station. A seismic event in 1995, some tectonic activity around the subject area, and the Kuroshio (the oceanic western boundary current) may possibly contaminate results which would have occurred from the astronomical annual tide alone.  相似文献   

12.
Spatial Variation of Sea Level Trend Along the Bangladesh Coast   总被引:1,自引:0,他引:1  
O. P. Singh 《Marine Geodesy》2002,25(3):205-212
The Bangladesh coast is threatened by rising sea level due to various factors. The results based on the analysis of past 22 years of tidal data of the Bangladesh coast reveal that the annual mean tidal level in the eastern Bangladesh coast is rising at an alarmingly high rate of 7.8 mm/year, which is almost twice the observed rate in the western region. This type of sea level trend seems to be the result of changing local conditions like increased precipitation and land subsidence during the recent decades. It seems that the higher rate of land subsidence in the eastern Bangladesh coast is the main causative factor for the steeper sea level trends there. The differential sea level trends show that the subsidence component in the sea level rise may be as high as 4 mm/year in the eastern Bangladesh coast. However, this needs to be verified with actual geological observations.  相似文献   

13.
O. P. Singh 《Marine Geodesy》2013,36(3):205-212
The Bangladesh coast is threatened by rising sea level due to various factors. The results based on the analysis of past 22 years of tidal data of the Bangladesh coast reveal that the annual mean tidal level in the eastern Bangladesh coast is rising at an alarmingly high rate of 7.8 mm/year, which is almost twice the observed rate in the western region. This type of sea level trend seems to be the result of changing local conditions like increased precipitation and land subsidence during the recent decades. It seems that the higher rate of land subsidence in the eastern Bangladesh coast is the main causative factor for the steeper sea level trends there. The differential sea level trends show that the subsidence component in the sea level rise may be as high as 4 mm/year in the eastern Bangladesh coast. However, this needs to be verified with actual geological observations.  相似文献   

14.
This is a review of sea level data performed at three selected stations (Québec-Lauzon, Harrington Harbour,and Halifax) in eastern Canada in order to investigate the seasonal trends and other long-term and short-term changes which occurred since the beginning of the 20th century. Stations situated in riverine or estuarine regions (e.g., Québec-Lauzon) are significantly affected by freshwater flow in their annual cycle of sea level changes and exhibit a definite maximum in spring and minimum in autumn-winter. Other stations situated in the eastern half of the Gulf of St. Lawrence (e.g., Harrington Harbour) or near the open Atlantic coast (Halifax) mainly follow the general cycle of subarctic regions, with lows in spring-summer and highs in autumn-winter. Such seasonal variations appear to be related to the atmospheric pressure and baroclinic current variations. Secular trends in mean sea level in eastern Canadian waterbodies show a mean rise of about 2.56 mm/yr -1 due to tectonic motions, that is, land subsidence. At several stations in eastern Canada, evidence is found for the influence of the nodal tide (18.6 years), the sunspot cycle (10.8 years), the lunar perigee (8.47 years), the pole tide (14.5 months), the annual cycle (12 months), and semiannual tidal cycle (6 months) in sea level records. Beside long-term oscillations with periods of more than one year, evidence is found for high energetic semidiurnal and diurnal tides where they contribute largely (from 90-95%) to short term variability of sea level. In the residual signal (variations of sea level--tidal variations), short-term variations between 2 to 30 days can be attributed to meterological forcing (atmospheric pressure and winds), longitudinal seiches (2-10 h), atmospheric tides (12 h and 24 h) and inertial oscillations (16-18 h). A regressive model showed that the water discharge from the St. Lawrence River contributes 29% to the monthly residual sea level at Québec-Lauzon. The atmospheric pressure and winds contribute respectively 8.1% and 8.9% at this station. They contribute 52.1% and 7.7% at Harrington Harbour and 41.8% and 14.3% at Halifax. The regression coefficients of residual sea level on atmospheric pressure are respectively estimated to be -1.507 cm. ( hPa ) -1 ( - 0.345 cm. ( hPa ) -1 ), -0.776 cm. ( hPa ) -1 ( - 0.112 cm. ( hPa ) -1 ) and -0.825 cm. ( hPa ) -1 ( - 0.008 cm. ( hPa ) -1 ) at the three stations. Compared to the coefficient of the inverted barometer, estimated to be -1 cm. ( hPa ) -1 , these effects of the atmospheric pressure on sea level variations seem to be amplified at Que´bec-Lauzon by the wind effects (and water discharge) while they are reduced at Harrington Harbour and Halifax.  相似文献   

15.
16.
The process of upwelling/sinking and associated sea level variations are seen as a response of coastal ocean to pure wind stress forcing. Further,precipitation and monsoonal floods, apart from the marine meteorological parameters, are expected to influence the sea level fluctuations along the coast. This study comprises determining the sea level from the various parameters together with the pure wind stress forcing, which is compared with the observed cycle. However, it is found that there is considerable difference between the computations and observations. This suggests that the sea level is dependent not just on the local forcing alone, but also on the induced background circulation as well. For example, the sea level changes along the east coast of India, particularly the northern region, are more sensitive to freshwater discharge from various rivers joining the Bay of Bengal. This is due to more frequently occurring pre- and postmonsoon cyclonic storms and the associated surges in the Bay of Bengal as compared to the Arabian Sea. Hence the salinity effects are particularly important in the coastal waters off the east coast of India during monsoon months (June-September). For the west coast of India, however, it is expected that the large-scale coastal circulation may play a role in determining sea level changes in addition to other forcings. The salinity effects are negligible along the west coast in the absence of any major river systems that join the Arabian Sea. The local advection currents caused by the offshore directed freshwater discharge from various estuaries joining the coastal bay also seemed to influence the sea level. In order to elucidate the essential dynamics involved and to study the effect of the remote forcing, a three-dimensional baroclinic, nonlinear numerical model is used with appropriate open boundary conditions. The local effect of the current has been incorporated in the west coast model by means of opening a channel at Cochin through which the rainwater is carried away to the model ocean. The low saline plume, cascading from north along the east cost of India, has been incorporated in the east coast model through a proper forcing applied at the northern boundary of the model. With the inclusion of these remote forcings in the models, the disagreement between the simulations and the observations is minimized.  相似文献   

17.
The process of upwelling/sinking and associated sea level variations are seen as a response of coastal ocean to pure wind stress forcing. Further,precipitation and monsoonal floods, apart from the marine meteorological parameters, are expected to influence the sea level fluctuations along the coast. This study comprises determining the sea level from the various parameters together with the pure wind stress forcing, which is compared with the observed cycle. However, it is found that there is considerable difference between the computations and observations. This suggests that the sea level is dependent not just on the local forcing alone, but also on the induced background circulation as well. For example, the sea level changes along the east coast of India, particularly the northern region, are more sensitive to freshwater discharge from various rivers joining the Bay of Bengal. This is due to more frequently occurring pre- and postmonsoon cyclonic storms and the associated surges in the Bay of Bengal as compared to the Arabian Sea. Hence the salinity effects are particularly important in the coastal waters off the east coast of India during monsoon months (June-September). For the west coast of India, however, it is expected that the large-scale coastal circulation may play a role in determining sea level changes in addition to other forcings. The salinity effects are negligible along the west coast in the absence of any major river systems that join the Arabian Sea. The local advection currents caused by the offshore directed freshwater discharge from various estuaries joining the coastal bay also seemed to influence the sea level. In order to elucidate the essential dynamics involved and to study the effect of the remote forcing, a three-dimensional baroclinic, nonlinear numerical model is used with appropriate open boundary conditions. The local effect of the current has been incorporated in the west coast model by means of opening a channel at Cochin through which the rainwater is carried away to the model ocean. The low saline plume, cascading from north along the east cost of India, has been incorporated in the east coast model through a proper forcing applied at the northern boundary of the model. With the inclusion of these remote forcings in the models, the disagreement between the simulations and the observations is minimized.  相似文献   

18.
Coastal inundation associated with extreme sea levels is the main factor which leads to the loss of life and property whenever a severe tropical cyclonic storm hits the Indian coasts. The Andhra and Orissa coasts are most vulnerable for coastal inundation due to extreme rise in sea levels associated with tropical cyclones. Loss of life may be minimized if extreme sea levels and associated coastal flooding is predicted well in advance. Keeping this in view, location specific coastal inundation models are developed and applied for the Andhra and Orissa coasts of India. Several numerical experiments are carried out using the data of past severe cyclones that struck these regions. The simulated inland inundation distances are found to be in general agreement with the reported flooding.  相似文献   

19.
渤海海温与叶绿素季节空间变化特征分析   总被引:4,自引:0,他引:4  
以2003年MODIS数据为数据源,在图像处理、空间插值的基础上作海温与叶绿素浓度的空间相关分析。结果表明,整个海域的叶绿素浓度和海温的分布具有明显的区域和季节变化特征。基本规律是叶绿素浓度从近岸向渤海中央递减;温度则随季节发生变化,随着温度升高,近海叶绿素浓度增高,而渤海中央区域叶绿素浓度降低。渤海叶绿素浓度的分布与河口径流、季节等因素有关。从空间关系看,海温与叶绿素浓度不存在很明显的空间分布相关性,但不同季节有不同的相关性。上述研究可用于估算海洋初级生产力。  相似文献   

20.
Based on the twice-daily marine atmospheric variables which were derived mostly from the weather maps for 18 years period from 1978 to 1995, the surface heat flux over the East Asian marginal seas was calculated at 0.5°×0.5° grid points twice a day. The annual mean distribution of the net heat flux shows that the maximum heat loss occurs in the central part of the Yellow Sea, along the Kuroshio axis and along the west coast of the northern Japanese islands. The area off Vladivostok turned out to be a heat-losing region, however, on the average, the amount of heat loss is minimum over the study area and the estuary of the Yangtze River also appears as a region of the minimum heat loss. The seasonal variations of heat flux show that the period of heat gain is longest in the Yellow Sea, and the maximum heat gain occurs in June. The maximum heat loss occurs in January over the study area, except the Yellow Sea where the heat loss is maximum in December. The annual mean value of the net heat flux in the East/Japan Sea is −108 W/m2 which is about twice the value of Hirose et al. (1996) or about 30% higher than Kato and Asai (1983). For the Yellow Sea, it is about −89 W/m2 and it becomes −75 W/m2 in the East China Sea. This increase in values of the net heat flux comes mostly from the turbulent fluxes which are strongly dependent on the wind speed, which fluctuates largely during the winter season. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号