首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
永磁同步电机高阶滑模控制与扰动转矩估计   总被引:3,自引:0,他引:3  
文章采用一种新型高阶滑模控制技术以及滑模微分器实现永磁同步电机位置跟踪控制和扰动转矩的在线估计.在分析电机的非线性模型后,由于系统输出耦合,利用输入输出反馈线性化进行解耦.设计了消除抖颤问题的高阶滑模控制器.扰动转矩的估计可以滑模变量及其各阶微分值得到,从而未知不确定因素转换为系统自身输入,减小了负载扰动对位置的影响,有效提高系统的性能.仿真实验的结果表明,多输入多输出的永磁同步电机扰动转矩得到了有效估计,系统位置跟踪的误差不超过0.12弧度,具有较好的动态性能.  相似文献   

2.
在很多场合永磁同步电机的输出转矩需要精确控制,同时希望转速平稳,不受电机参数变化及负载扰动的影响。介绍了一种以转速、转矩和磁链为虚拟变量的反推控制算法,可以使永磁同步电机的输出转矩在全局范围内快速无差跟踪负载转矩,并结合自适应控制律,可以实时估计定子电阻和负载转矩,能有效减小内外部扰动对电机转速的影响。仿真结果表明:此控制方法可以有效提高系统的静态和动态性能,保证系统的全局收敛,且转矩跟踪迅速,电机参数变化和负载扰动对电机转速的影响很小,有良好的伺服性能和较强的抗干扰能力。  相似文献   

3.
针对永磁直线同步电机伺服系统受到系统参数变化、负载扰动而降低其性能的问题,考虑端部效应以及摩擦力的存在,提出一种自适应区间二型模糊滑模控制方法.采用自适应区间二型模糊系统逼近滑模控制等效控制部分,把传统的一型模糊系统扩展到区间二型模糊系统,提高系统面临参数变化、不确定性扰动时的处理能力.基于Lyapunov函数设计切换项增益调整的自适应律,保证系统的稳定性.仿真结果表明,该方法提高了系统的鲁棒性,有效地削弱了系统的抖振.  相似文献   

4.
为了改善永磁同步电机伺服系统的控制性能和抗干扰能力,解决滑模控制存在的抖振问题,本文设计了永磁同步电机线性自抗扰与滑模方法协调控制的策略。为了保证电流环的快速动态响应及抗干扰性能,内环采用自适应滑模控制,为了减小抖振,自适应律采用变指数趋近律;外环起动时采用滑模控制,转速接近期望值时,通过协调函数对线性自抗扰与滑模控制两种方法进行平滑过渡,达到期望值时,采用稳态性能更好的线性自抗扰控制。协调控制策略结合了两种控制方法的优点,避免了滑模抖振现象的产生,改善了电机转速的动态和稳态性能。最后在负载转矩未知时设计了观测器和新的控制器,快速准确的观测未知负载扰动,提高了受到扰动时的控制精度。仿真结果表明了线性自抗扰与滑模协调控制器的优越性,达到了预期要求。该控制具有广泛的应用价值。  相似文献   

5.
为实现柔性关节机器人的高精度位置跟踪控制,本文提出了基于模糊逼近的反步自适应控制方法。该方法将隐极式永磁同步电机(permanent magnet synchronous motor,PMSM)作为驱动系统,建立二自由度柔性关节机器人的系统模型,设计反步自适应位置控制器,并利用模糊逻辑系统,逼近虚拟控制器导数项,解决高阶系统反步控制器结构复杂的问题。考虑到无力矩传感器的情况,引入电机负载转矩观测器,结合电机矢量控制策略,设计了反步电流控制器,保证驱动电机有较快的动态响应。同时,利用Lyapunov稳定性定理,对柔性关节机器人控制系统进行稳定性分析,证明整个系统为渐近稳定。仿真结果表明,本文采用的模糊反步自适应位置控制器,能够实现柔性关节机器人高精度位置跟踪控制,响应速度快,驱动电机的转矩波动小,控制器结构简单。该研究在机器人驱动系统中具有广泛的应用前景。  相似文献   

6.
针对异步电动机速度控制系统中的不确定性负载问题,本文设计了新型自适应反步控制器,实现异步电动机高性能转速跟踪控制。通过选择合理的Lyapunov函数及稳定函数,给出自适应反步控制算法,分析了整个控制系统的稳定性。在递归设计中首次出现不确定性负载时,设计了负载的自适应律,得到新型自适应负载转矩观测器,精确估计了不确定性负载转矩。仿真结果表明,本文设计的新型自适应负载转矩观测器,实现了不确定性负载的在线精确估计。与矢量控制方法相比,该控制策略的转速响应更加迅速,快速消除了负载扰动对转速的影响,具有良好的应用前景。  相似文献   

7.
应用能量成形方法,将永磁同步电机控制系统看作二端口能量转换装置,建立了位置伺服控制模型,求取了满足最大输出功率原理的系统平衡点。选择了期望的哈密顿函数,配置了期望的互联和阻尼矩阵,设计了位置控制器,并针对负载转矩存在未知扰动的情形,设计了负载转矩观测器。仿真结果表明,所设计的控制系统得到令人满意的位置跟踪特性,响应快速准确,对负载转矩扰动具有很好的抑制作用。  相似文献   

8.
针对永磁同步电机驱动的导弹尾翼电动负载模拟器存在的高阶非线性及参数时变问题,提出一种基于反演设计的快速终端滑模控制方法.建立电动负载模拟器系统的状态空间模型,将建模误差及参数摄动视为未知扰动项,基于反演控制的设计思想,将系统模型划分为3个子系统,采用快速终端滑模方法设计控制律,使跟踪误差在有限时间内收敛到零.然后应用Lyapunov方法证明了闭环系统的渐进稳定性及有限时间收敛特性,最后通过试验验证了该控制策略的有效性.与PI+前馈补偿控制策略相比,该方法能够更好地抑制系统中的多余力矩,提高了电动加载系统的力矩加载精度,同时有效提高了加载系统的鲁棒性.  相似文献   

9.
为减少负载转矩扰动对永磁同步电机控制造成的影响,设计了一种改进型负载转矩观测器.以转速和负载转矩为观测对象建立负载转矩观测器,将观测的负载转矩前馈补偿至转矩电流中,并加入可变增益算法,有效抑制了滑模速度控制器输出的抖振问题;采用改进滑模速度控制器替代传统的PI控制,通过改进控制器中指数趋近律函数,提高了系统的响应速度....  相似文献   

10.
针对永磁同步电机驱动系统中存在的随机扰动问题,本文在自适应反步法基础上,利用模糊逼近原理逼近系统中未知的非线性函数,并运用命令滤波技术,解决了传统反步法中因对虚拟控制函数连续求导而产生的计算爆炸问题,实现对考虑输入饱和的永磁同步电机随机非线性系统的位置跟踪控制,为验证本方法的有效性,采用Matlab进行仿真实验。仿真结果表明,本文设计的控制器能克服输入饱和的影响,很好的跟踪设定的期望信号,并且保证跟踪误差收敛在原点很小的邻域内,实现了对永磁同步电机快速有效的控制。该研究对实际系统具有一定的应用价值。  相似文献   

11.
针对传统无刷直流电机调速系统抗负载扰动能力不强,本文采用反电势观测器和滑模控制,对无刷直流电机的转速转矩双闭环系统进行了研究。转速环采用比例积分(PI)控制器,转矩环采用滑模变结构控制器和反电势观测器相结合的控制方法,通过对反电势的观测来计算系统的电磁转矩,并利用Lyapunov稳定判据分析了系统稳定性,同时为验证该方法对BLDCM调速系统的控制性能,在Matlab/Simulink环境下对BLDCM调速系统进行了仿真实验。仿真结果表明,转速转矩双闭环调速系统比传统的PI调速系统的控制效果更好,而且在系统存在负载时,转速转矩双闭环系统比传统的PI调速系统具有更好的抗干扰性,在负载撤销之后能更快达到稳态。该研究为无刷直流电机调速系统提供了新的控制方案。  相似文献   

12.
由于三次谐波的影响,三相永磁同步电机的无位置传感器控制方法无法直接应用于五相永磁同步电机无位置传感器控制。在考虑三次谐波电压和电流的条件下,提出一种基于自适应滑模观测器的五相永磁同步电机无位置传感器控制方法。该方法首先利用带三次谐波的五相永磁同步电机模型设计了滑模观测器,并用sigmoid函数代替一般滑模观测器常用的符号函数作为观测器的开关函数,以减小滑模抖动并获得更为准确的反电势当量信号。其次设计了反电势自适应观测器以估计电机转速和位置信号,消除了常规无位置传感器控制系统中所必需的低通滤波器和相位补偿单元,提高了转速和位置信号的估计精度。此外,利用李雅普诺夫准则,证明了所设计的滑模观测器和反电势自适应观测器的稳定性,并利用Matlab/Simulink进行了仿真实验。仿真结果显示,与常规滑模观测器相比,所提出的自适应滑模观测器在五相永磁同步电机无位置传感器控制系统中抖动更小,转速和位置估计误差更小,反电势估计更为准确,具有较强的鲁棒性。  相似文献   

13.
永磁同步电机混合非线性控制策略   总被引:3,自引:0,他引:3  
永磁同步电机是一个非线性多变量强耦合系统,采用传统的线性控制方法难以在大范围运行中保持良好的动态性能和鲁棒性.针对永磁同步电机的特点,提出一种结合滑模控制和自抗扰控制的混合非线性控制策略,用于永磁同步电机矢量控制系统设计.根据指数趋近律算法设计滑模控制器,用于内环的电流控制.外环的速度采用自抗扰控制,速度控制器对负载扰动进行估计和补偿.仿真结果表明,提出的控制系统不仅具有良好的动态和静态性能,而且对负载及系统参数扰动具有较强的鲁棒性.  相似文献   

14.
受负载扰动及参数时变等因素影响,永磁同步电机调速系统的鲁棒性会变差,滑模控制对于系统的参数变化、模型不精确及外部扰动等因素不敏感,能够有效提高永磁同步电机控制系统的鲁棒性,但滑模控制实现过程中却存在抖振问题.为解决鲁棒性和抖振问题之间的矛盾,提出一种分数阶滑模控制方法,通过在分数阶滑模面的设计中使用分数阶饱和函数代替符号函数,更有效地消除滑模控制的抖振问题.仿真和实验表明:相较于传统的滑模控制,所提控制方法使得永磁同步电机调速系统具有更好的动态性能和抗负载扰动能力.  相似文献   

15.
针对常规PID控制器无法很好地应对永磁同步电机参数变化和负载扰动等不确定因素的影响,设计一种以三角函数为神经元激励函数的非线性PID神经网络控制器,并将其与常规PID控制器相结合用于永磁同步电机控制.仿真实验结果表明,该控制系统具有快速的响应能力、更好的动态性能和更加稳定的跟踪性能,适合于永磁同步电机速度控制.  相似文献   

16.
针对执行重复性任务的永磁同步电机伺服系统,由于参数摄动、随机扰动等不确定因素影响导致的跟踪精度下降,误差发散问题,提出一种自适应迭代学习控制方法.该方法在PD型反馈控制的基础上增加自适应迭代项对控制律中未知参数进行迭代学习,减少不确定因素对系统性能的影响.建立了含有不确定性扰动的系统模型和PMSM自适应迭代学习控制系统,并且基于Lyapunov稳定性理论,分析了该方案的收敛性.结果表明,与传统PD型ILC相比,该方法收敛速度更快,跟踪精度更高,可有效改善系统的性能.  相似文献   

17.
为克服永磁同步电机在运行过程中受负载转矩扰动和电机参数变化的影响,提高永磁同步电机在无位置传感器条件下的抗干扰能力,提出了一种宽转速范围自抗扰动控制策略.首先,设计了一种滑模位置观测器,结合电压闭环弱磁扩速,实现了永磁同步电机在无位置传感器条件下的宽转速范围运行.其次,通过合理配置龙贝格观测器极点,在线估算负载转矩变化,在宽转速范围采用电流前馈补偿负载转矩扰动.接着利用内模控制整定电流环PI控制器参数,采用带遗忘因子递推最小二乘算法,设计了一种根据不同工况下切换的多电机参数分步辨识算法,解决了辨识方程数少于待辨参数的“欠秩”问题,进而实现电流控制器跟随电机参数自适应调节.仿真结果表明,所提出的控制策略能够实现无位置传感器宽转速范围对外部负载转矩扰动和电机参数变化的自抗干扰控制.  相似文献   

18.
为了克服电机参数变化和负载扰动的不确定性对永磁同步电机动态解耦控制系统性能造成不利影响,提出一种带干扰抑制的永磁同步电机调速系统的非线性解耦控制方法,将参数变化和负载转矩扰动作为扰动输入,基于Lyapunov函数设计系统的状态反馈控制器,使得闭环系统对所有有界干扰是内部稳定的,且从扰动输入到输出满足任意小的有界L 2增益.仿真和试验结果表明:该控制策略能有效地改善调速系统的动态性能,增强其鲁棒性和抗干扰能力.  相似文献   

19.
基于哈密顿系统原理的PMSM自适应阻尼注入控制   总被引:1,自引:0,他引:1  
基于能量成形和端口受控哈密顿(PCH)系统原理,针对永磁同步电机(PMSM)参数不确定性所引起的转速误差,利用自适应阻尼注入控制方法,设计了负载转矩恒定已知和未知情况下的控制器。采用最大转矩/电流(MTPA)控制原理确定系统期望平衡点,并分析其稳定性。仿真结果表明,将自适应阻尼注入控制方法应用到PMSM的PCH控制中,对参数不确定性所引起的转速误差具有很好的抑制作用,从而使系统具有较好的转速跟踪性能。  相似文献   

20.
针对陀螺漂移测试转台直流力矩电机系统中存在的非线性动态摩擦和负载扰动,为提高转台位置跟踪精度,提出了一种新的自适应补偿方法.电机中摩擦模型采用摩擦参数为非一致性变化的 LuGre 动态模型.该方法控制器包含一个参数自适应律和等效 PD 控制律来估计未知 LuGre 模型参数和负载力矩参数并给与补偿.最后 Lyapunov 方法和仿真结果证明该自适应补偿方法保证了闭环系统全局稳定性和对期望位置信号的渐进跟踪,提高了转台摇摆跟踪精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号