首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, end‐to‐end performance of transmit antenna selection (TAS) and generalized selection combining (GSC) is studied in a dual‐hop amplify‐and‐forward relay network over flat Rayleigh fading channels. In the system, source and destination equipped with multiple antennas, communicate by the help of single relay equipped with single antenna. Source‐destination link is not available. TAS is used for transmission at the source, and GSC is used for reception at the destination. By considering the relay location and the presence of error in feedback channel from the relay to the source, we derive closed‐form outage probability, moment generating function and moments of end‐to‐end signal‐to‐noise ratio, and closed‐form symbol error probability (SEP) expressions for channel state information (CSI)‐based and fixed relay gains. The diversity order and array gain of the network are obtained for both CSI‐based and fixed relay gains by deriving asymptotical outage probability and SEP expressions. The analytical results are validated by the Monte Carlo simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This letter investigates the joint effects of imperfect channel state information and co‐channel interferences on a two‐hop fixed gain amplify‐and‐forward (AF) relay network with beamforming. Specifically, the analytical expressions of the outage probability and the average symbol error rate for the AF relaying are derived. Moreover, the asymptotic analysis at high signal‐to‐noise ratio is also presented to reveal the diversity order and array gain of the considered AF relay system. Finally, computer simulations are given to confirm the validity of the analytical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
This paper proposes a joint precoding and power allocation strategy to maximize the sum rate of multiuser multiple‐input multiple‐output (MIMO) relay networks. A two‐hop relay link working on amplify‐and‐forward (AF) mode is considered. Precoding and power allocation are designed jointly at the base station (BS). It is assumed that there are no direct links between the BS and users. Under individual power constraints at the BS and relay station, precoders designed based on zero forcing, minimum mean‐square error and maximum ratio transmission are derived, respectively. Optimal power allocation strategies for these precoders are given separately. To demonstrate the performance of the proposed strategies, we simulate the uncoded bit error rate performance of the underlined system. We also show the difference of the sum rate of the system with the optimal power allocation strategies and with average power transmission. The simulation results show the advantages of the proposed joint precoding and power allocation strategies as expected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This letter studies the joint effects of imperfect channel state information (CSI) and co-channel interference (CCI) on a dual-hop variable gain amplify-and-forward (AF) relay network with beamforming. The source and destination are both equipped with multiple antenna, while the relay has a single antenna. Specifically, the analytical expressions for the outage probability and average symbol error rate of the considered AF relaying are derived. Moreover, the asymptotic analysis at high SNR is also presented to reveal the diversity order and array gain of the relay system. Finally, computer simulations are given to confirm the validity of the proposed theoretical analysis and quantify the combined influence of imperfect CSI and CCI on the system performance.  相似文献   

5.
In this paper, we extend the geometrical one‐ring multiple‐input multiple‐output (MIMO) channel model with respect to frequency selectivity. Our approach enables the design of efficient and accurate simulation models for wideband space‐time MIMO channels under isotropic scattering conditions. Two methods will be provided to compute the parameters of the simulation model. Especially, the temporal, frequency and spatial correlation properties of the proposed wideband space‐time MIMO channel simulator are studied analytically. It is shown that any given specified or measured discrete power delay profile (PDP) can be incorporated into the simulation model. The high accuracy of the simulation model is demonstrated by comparing its statistical properties with those of the underlying reference model with specified correlation properties in the time, frequency and spatial domain. As an application example of the new MIMO frequency‐selective fading channel model, we study the influence of various channel model parameters on the system performance of a space‐time coded orthogonal frequency division multiplexing (OFDM) system. For example, we investigate the influence of the antenna element spacings of the base station (BS) antenna as well as the mobile station (MS) antenna. It turns out that an increasing of the antenna element spacing at the BS side results in a higher diversity gain than an increasing of the antenna element spacing at the MS side. Furthermore, the diversity gain brought in by space‐time block coding schemes is investigated by simulation. Our results show that transmitter diversity can significantly reduce the symbol error rate (SER) of multiple antenna systems. Finally, the influence of the Doppler effect and the impact of imperfect channel state information (CSI) on the system performance is also investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a fixed‐gain amplify‐and‐forward relaying under non‐ideal hardware is analyzed. The relaying system is impaired because of relay's power amplifier (PA) nonlinearity and in‐phase and quadrature‐phase (IQ) imbalance at a destination. Closed‐form expressions for outage probability as well as ergodic capacity approximation and its upper bound are derived. Also, the outage probability and the ergodic capacity asymptotic expressions in the high signal‐to‐noise ratio are deduced. For the first time, the joint influence of PA nonlinearity and IQ imbalance on the system in terms of outage probability, symbol error rate, and ergodic capacity is investigated. The results are compared with the respect to soft envelope limiter and traveling‐wave tube amplifier at the relay. Based on the analytical and the numerical results, important insights into the impact of IQ imbalance and nonlinearity of the aforementioned PA models on the system performance are gained as well as valuable information on the performance of practically deployed fixed‐gain amplify‐and‐forward relaying system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, performance of joint transmit and receive antenna selection in each hop of dual hop amplify‐and‐forward relay network is analyzed over flat and asymmetric Nakagami‐m fading channels. In the network, source, relay, and destination are equipped with multiple antennas. By considering relay location, we derive exact closed‐form cumulative distribution function, moment generating function, moments of end‐to‐end signal‐to‐noise ratio and closed form symbol error probability expressions for fixed and channel state information‐based relay gains. We also derive the asymptotical outage probability and symbol error probability expressions to obtain diversity order and array gain of the network. Analytical results are validated by the Monte Carlo simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Half‐duplex amplify‐and‐forward (AF) transmissions may result in insufficient use of degrees of freedom if they always use the cooperative mode regardless of the fading states. In this paper, we investigate the conditions under which cooperation offers better performance and the corresponding optimal power allocation during cooperation. Specifically, we first derive an expression of ergodic capacity and its upper bound for an AF cooperative communication system with n relay nodes. Secondly, we propose a novel quasi‐optimal power allocation (QOPA) scheme to maximize the upper bound of the derived ergodic capacity. For the QOPA scheme, the cooperative mode is only adopted when the channel gain of source‐to‐destination is worse than that of relay‐to‐destination. Moreover, we analyze the performance of the system with QOPA scheme when the relay moves, which is based on the random direction model, in a single‐relay wireless network. For a multi‐relay AF network, we compare the ergodic capacity and symbol error rate, corresponding to the proposed QOPA and equal power allocation schemes, respectively. Extensive simulations were conducted to validate analytical results, showing that both ergodic capacity and symbol error rate of the system with QOPA scheme are better than those of the system with equal power allocation scheme in a multi‐relay AF network. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we study end-to-end performance of transmit antenna selection (TAS) and maximal ratio combining (MRC) in dual hop amplify-and-forward relay network in flat and asymmetric Nakagami-m fading channels. In the network, source and destination communicate by the help of single relay and source-destination link is not available. Source and destination are equipped with multiple antennas, and relay is equipped with single antenna. TAS and MRC are used for transmission at the source and reception at the destination, respectively. The relay simply amplifies and forwards the signal sent by the source to the destination by using channel state information (CSI) based gain or fixed gain. By considering relay location, for CSI based and fixed relay gains, we derive closed-form cumulative distribution function, moments and moment generating function of end-to-end signal-to-noise ratio, and closed-form symbol error probability expression. Moreover, asymptotical outage probability and symbol error probability expressions are also derived for both CSI based and fixed gains to obtain diversity order of the network. Analytical results are validated by the Monte Carlo simulations. Results show that diversity order is minimum of products of fading parameter and number of antennas at the end in each hop. In addition, for optimum performance the relay must be closer to the source when the diversity order of the first hop is smaller than or equal to that of the second hop.  相似文献   

10.

Wireless body area networks (WBANs) are deal with wireless networks in the human body. We describe the performance analysis of dual-hop cooperative relaying systems employing amplify-and-forward (AF) technique in WBANs over independent and nonnecessary identically distributed Gamma fading channels. More specifically, we present closed-form derivations of the outage probabilities (OP), symbol error probabilities (SEP) and ergodic capacity (EC) for fixed gain and channel state information (CSI)-assisted relaying techniques at arbitrary signal-to-noise-ratios (SNRs). We also deduce novel expressions in the high SNR region. By doing so, we can quantify the performance of system by the diversity and coding gains. Using the derived expressions as a starting point and for the case of Exponential fading, we consider three practical optimization scenarios. They are optimal relay position with fixed power allocation, power allocation under the fixed location of the relay and joint optimization of power allocation and relay position under a transmit power constraint. The Monte Carlo simulations are used to validate the accuracy of our derivations, where it is demonstrated that the proposed adaptive allocation method significantly outperforms the fixed allocation method.

  相似文献   

11.
In this paper, we analyze the performance of cognitive amplify‐and‐forward (AF) relay networks with beamforming under the peak interference power constraint of the primary user (PU). We focus on the scenario that beamforming is applied at the multi‐antenna secondary transmitter and receiver. Also, the secondary relay network operates in channel state information‐assisted AF mode, and the signals undergo independent Nakagami‐m fading. In particular, closed‐form expressions for the outage probability and symbol error rate (SER) of the considered network over Nakagami‐m fading are presented. More importantly, asymptotic closed‐form expressions for the outage probability and SER are derived. These tractable closed‐form expressions for the network performance readily enable us to evaluate and examine the impact of network parameters on the system performance. Specifically, the impact of the number of antennas, the fading severity parameters, the channel mean powers, and the peak interference power is addressed. The asymptotic analysis manifests that the peak interference power constraint imposed on the secondary relay network has no effect on the diversity gain. However, the coding gain is affected by the fading parameters of the links from the primary receiver to the secondary relay network. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
We consider infrastructure-based amplify-and-forward (AF) relaying for extending downlink and uplink coverage areas of a cellular base station. The base station serves multiple mobile users via a multi-hop backhaul relay link by sharing out access link channel resources with maximum signal-to-noise ratio (SNR) scheduling. We analyze the performance of the system by deriving closed-form expressions for outage probability, outage capacity, ergodic capacity, average end-to-end SNR and amount of fading (AoF). These measures show that maximum SNR scheduling of multiple users in a cellular relay link offers significant diversity, capacity and SNR improvement over single-user transmission and round robin scheduling. We also relate performance of the relay link to that of a distributed antenna system (DAS), and show that the noisy wireless backhaul relay link induces tolerable performance deterioration compared to deploying a cable-connected distributed antenna.  相似文献   

13.
In this paper, we derive a moment generating function (MGF) for dual‐hop (DH) amplify‐and‐forward (AF) relaying networks, in which all nodes have an arbitrary number of antennas, with orthogonal space‐time block code (OSTBC) transmissions over Rayleigh fading channels. We present an exact error rate expression based on the derived MGF and another analytical approach to derive achievable performance bounds as closed‐forms of symbol error rate, outage probability, and normalized channel capacity. Furthermore, we derive the asymptotic behavior of symbol error rate and outage probability. From this asymptotic behavior, it is shown that the diversity order and its dependence on antenna configurations can be explicitly determined. Simulation results are also presented to verify their accuracy by comparing with numerical results and to provide an insight to the relationship between relaying networks' antenna configuration and diversity order. It is confirmed that the transmit antenna gain of the source node and the receive antenna gain of the relay node can be obtained only when the relay is close to the destination, and then, the transmit antenna gain of the relay node and the receive antenna gain of the destination node can be obtained only when the relay is close to the source.  相似文献   

14.
This paper investigates the performance of a two-hop amplify-and-forward (AF) relay network with antenna correlation and co-channel interference (CCI) over Rayleigh fading channels. In this network, the relay has multiple antennas while both the source and destination are equipped with a single antenna. By assuming that the statistical channel state information (SCSI) is available at the relay, the maximal output signal-to-interference-plus-noise ratio (SINR) is first obtained. Then, with the help of the specialized functions, the analytical expressions for the outage probability (OP), Ergodic capacity and average symbol error rates (ASERs) of the considered AF relay network are all derived. Moreover, the asymptotic analysis at high signal-to-noise ratio (SNR) is also presented to reveal the diversity order and array gain of the relay system. Finally, computer simulations are given to confirm the validity of the theoretical analysis and indicate the effects of antenna correlation and interference on the system performance.  相似文献   

15.
This paper considers cooperative non‐orthogonal multiple access (NOMA) scheme in an underlay cognitive radio (CR) network. A single‐cell downlink cooperative NOMA system has been considered for the secondary network, consisting of a base station (BS) and two secondary users, ie, a far user and a near user. The BS employs NOMA signaling to send messages for the two secondary users where the near user is enabled to act as a half‐duplex decode‐and‐forward (DF) relay for the far user. We derive exact expressions for the outage probability experienced by both the users and the outage probability of the secondary system assuming the links to experience independent, nonidentically distributed Rayleigh fading. Further, we analyze the ergodic rates of both the users and the ergodic sum rate of the secondary network. The maximum transmit power constraint of the secondary nodes and the tolerable interference power constraint at the primary receiver are considered for the analysis. Further, the interference caused by the primary transmitter (PT) on the secondary network is also considered for the analysis. The performance of the proposed CR NOMA network has been observed to be significantly better than a CR network that uses conventional orthogonal multiple access (OMA) scheme. The analytical results are validated by extensive simulation studies.  相似文献   

16.
This paper studies the outage performance of a dual-hop amplify-and-forward (AF) relay fading channel in an interference-limited environment. The relay and destination nodes are corrupted by multiple co-channel Rayleigh interferences. New exact closed-form expressions for the outage probability for channel-state-information (CSI)—assisted relay, in which gain is dependent on previous hop CSI and interference, are derived. Monte Carlo simulations are performed to verify the obtained theoretical results. For the cases where the number of interferers at the relay and the destination node is equal, we derive novel expressions for outage probability upper and lower bounds.  相似文献   

17.
To attain overall recognition of the effect of Nakagami‐m channel parameters on the second‐order statistics and to present a guide to the design and configuration of systems, we investigate the average level crossing rate (LCR) and average fading duration (AFD) of multiuser single relay cooperation wireless communications, in which the multiple mobile users communicate with base station under the help of single relay. On the basis of the statistical channel state information (CSI) between mobile users and relay, a single user is selected to communicate with base station. For the multiuser relay cooperation communications, we first present the integral expressions to the LCR and AFD of equivalent end‐to‐end envelope by using strict mathematical proof. Then with appropriate approximation, we obtain the closed‐form solutions to the upper and lower bounds of average LCR and AFD as well as the ones of Laplace approximation. Finally, on the basis of the derivations, we validate the approximations to LCR and AFD, and investigate the effect of the system parameters on LCR and AFD. The comparison results show that the derivations match well the simulations, and the exact values can be bounded by the obtained upper and lower bounds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, performance of an orthogonal frequency division multiplexing–based variable‐gain amplify and forward cooperative system using multiple relay with relay selection is analyzed over independent but not necessarily identically distributed frequency selective Nakagami‐m fading channels. For the analysis, nonlinear power amplifier is considered at the relay, and selection combining is adopted at destination node. Closed‐form expressions of the outage probability for various threshold signal‐to‐noise ratio (SNR) values and average symbol error rate for M‐ary quadrature amplitude modulation techniques are derived for the considered system. Further, the outage probability analysis is performed in high SNR regime to obtain the diversity order. Furthermore, impact of different fading parameters, multiple relay, and nonlinear power amplifier is highlighted on the outage probability and asymptotic outage probability for various threshold SNRs and on the average symbol error rate for various quadrature amplitude modulation constellations. The derived analytical expressions are generalized for various fading environments while considering the integer‐valued fading parameters. Finally, all the analytical results are verified through the Monte Carlo simulations for various SNR levels and system configurations.  相似文献   

19.
Consider a multi‐user underlay cognitive network where multiple cognitive users concurrently share the spectrum with a primary network with multiple users. The channel between the secondary network is assumed to have independent but not identical Nakagami‐m fading. The interference channel between the secondary users (SUs) and the primary users is assumed to have Rayleigh fading. A power allocation based on the instantaneous channel state information is derived when a peak interference power constraint is imposed on the secondary network in addition to the limited peak transmit power of each SU. The uplink scenario is considered where a single SU is selected for transmission. This opportunistic selection depends on the transmission channel power gain and the interference channel power gain as well as the power allocation policy adopted at the users. Exact closed form expressions for the moment‐generating function, outage performance, symbol error rate performance, and the ergodic capacity are derived. Numerical results corroborate the derived analytical results. The performance is also studied in the asymptotic regimes, and the generalized diversity gain of this scheduling scheme is derived. It is shown that when the interference channel is deeply faded and the peak transmit power constraint is relaxed, the scheduling scheme achieves full diversity and that increasing the number of primary users does not impact the diversity order. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates secure transmission of an integrated satellite‐aerial‐terrestrial network (ISATN), where multiple eavesdroppers (Eves) attempt to overhear the satellite signals cooperatively. The ISATN adopts an unmanned aerial vehicle (UAV) equipped with multiple antennas as a relay with threshold‐based decode‐and‐forward (DF) protocol. By assuming that perfect instantaneous channel state information (CSI) of the satellite‐UAV link and the statistical CSI of the UAV‐user link are available, we first propose a beamforming (BF) scheme for maximizing the achievable secrecy rate (ASR) of the considered network. Then, we derive the analytical expressions of the secrecy outage probability (SOP) and ergodic secrecy rate (ESR) of the considered system with the BF strategy under an assumption that the satellite‐UAV link undergoes the shadowed‐Rician fading, while the UAV‐user link experiences the correlated Rayleigh fading. Finally, numerical results are given to demonstrate the superiority of the proposed BF scheme against zero forcing (ZF) and maximal ratio transmission (MRT) schemes and the validity of the secrecy performance analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号