首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The nickel-based superalloy K418 and alloy steel 42CrMo dissimilar metals friction welding joints lack strength and toughness due to high hardening and poor joining quality at the friction interface. To resolve this issue, a new current inertia friction welding (CIFW) method is carried out by hybrid an external additional electronic current in inertia friction welding (IFW) process. The characteristics of welding formation, the elements’ diffusion, and the mechanical properties of K418–42CrMo dissimilar metal joints are studied by scanning electron microscope, energy dispersive spectrometer, and X-ray diffractometer tools. The experimental results show that hybrid additional electronic current has a significant positive influence on interface characteristics of IFW joints. The required welding time for CIFW to complete a good qualified joint is shortened due to mixture actions of both friction heat and resistance heat. The width of the element diffusion zone increases in CIFW joints, and elements in 42CrMo side diffuse through the K418/42CrMo interface into the K418 side in CIFW joints. The width of the K418/42CrMo bonding interface increases in CIFW joints. The microhardness at the K418/42CrMo bonding interface is decreased in CIFW joints. The mechanical tensile property of CIFW joints is increased obviously. The interface bonding pattern becomes jagged and interlocking perfect formations. These above changes improve the joining quality of K418–42CrMo dissimilar metal friction welding joints. The heat treatment effect and resistance heat effect originated from hybrid external electronic currents are discussed by comparing CIFW with IFW. A new model is proposed to illustrate the interface’s evolution and development mechanism in K418–42CrMo dissimilar metal CIFW.  相似文献   

2.
Pulse current auxiliary transient liquid-phase (TLP) diffusion bonding of SiCp/2024Al composite sheet was investigated at 580 °C using mixed Al–Cu–Ti powder interlayer. The optimal process parameters were applied as follows: pulse current density of 1.15?×?102 A/mm2, pressure of 0.5 MPa, vacuum of 1.3 ×?10?3 Pa, and bonding time from 15 to 60 min. The bonding quality is evaluated by microstructure characterization and mechanical properties of the joints. The mechanism of pulse current auxiliary TLP diffusion bonding process is analyzed. The results indicated that the dense joints without cavity consisted of the Al-based solid solution, pure Ti, Al2Cu, and TiAl3 intermetallic phase. Microhardness of joints was obviously higher than Cu diffusion zone and substrate materials zone. The shear strength of the joints monotonically increased with bonding time. The maximum value exceeded 154.1 MPa in bonding time of 60 min. Pulse current generated Joule heat, high-temperature spark plasma, and electromigration, which guarantee the feasibility of bonding process and high-quality joint.  相似文献   

3.
In this investigation, Mg–Cu dissimilar materials are joined by diffusion bonding process. The principal difficulty when joining Mg–Cu lies in the existence of hard-to-remove oxide films on the magnesium surfaces and the formation of brittle metallic interlayers and oxide inclusions in the bond region. In this investigation, an attempt was made to develop diffusion bonding windows for effective joining of AZ31B Magnesium and commercial grade copper alloys. Joints were fabricated using different combination of process parameters such as bonding temperature, bonding pressure and holding time. The bonding quality was checked by microstructure analysis and lap shear tensile test. Based on the results, diffusion bonding windows were constructed, and they are presented in this paper. These windows will act as reference maps for selecting appropriate diffusion bonding process parameters to get good quality bonds for Mg–Cu alloys.  相似文献   

4.
在不同工艺参数下对化学清洗去除表面氧化膜的6061-T6铝合金进行真空扩散焊接,研究了焊接温度(500~560℃)、焊接压力(1.0~5.0MPa)和保温时间(0.5~3h)对焊接接头界面形貌和剪切强度的影响,得到了优化工艺参数。结果表明:随着焊接温度的升高、焊接压力的增大和保温时间的延长,接头焊缝变窄并最终消失,剪切强度和焊合率增大;但当保温时间延长到3h时,焊缝附近晶粒发生粗化,导致剪切强度降低,且接头发生较大变形;不同工艺参数下接头的剪切断裂形式均为脆性断裂;较优的真空扩散焊接工艺参数为焊接温度540℃、保温时间2h、焊接压力4.0MPa。  相似文献   

5.
In the present study, diffusion bonding of aluminium alloy (AA7075) sheet materials which are used especially in the automobile and aerospace industry has been investigated at temperatures of 425 and 450 °C and pressures of 2 and 3 MPa for 180 min in argon atmosphere. The microstructural and mechanical properties of bonding have been characterized with different welding parameters such as bonding temperature and pressure. The microstructure was characterized by light optical microscope, scanning electron microscope and energy dispersive spectroscopy, while the mechanical properties were determined by tensile-shear tests and microhardness tests. The results obtained are discussed from both the microstructural and mechanical points of view. It was observed in the microstructural investigations that the interfacial oxide layer decreased with increasing of the bonding temperature and pressure. The maximum shear strength was found to be 131 MPa for the Al 7075 sample bonded at 450 °C and 3 MPa for 180 min. It is shown that in certain extent, the bonding temperature and bonding pressure have great effect on the joint shear strength. With the increasing of bonding temperature and pressure, the shear strength of the joints increases due to diffusion of atoms in the interface. The strength achieved after bonding were dependent on interface grain boundary migration and on grain growth during the bonding process. The maximum hardness value of the Al 7075 sample bonded at 450 °C, 3 MPa for 180 min is 92.5 HV0.2. Increasing hardness with increasing temperature can be attributed to the formation of metallic bond at high temperatures and pressures.  相似文献   

6.
A rectangular spot laser welding–brazing method was developed to join butted Ti/Al dissimilar alloys. In order to evaluate effects of heat input on mechanical property of the joints, microstructure of the joints were characterized. TiAl3 intermetallic compounds (IMCs) were found at the joint interface in the case of low-heat input and TiAl3, TiAl, Ti5Si3, and Ti3Al IMCs were observed at high-heat input. Results of tensile test showed that the joints fracture in the fusion zone under the condition of low-heat input and in the interfacial reaction layer or the fusion zone with a mass of porosities at high-heat input. In addition, tensile strength of specimens broken at the fusion zone is higher obviously than that at the interface or the fusion zone with a mass of porosities, and tensile strength of the joints is up to 290 MPa.  相似文献   

7.
The eutectic bonding of magnesium alloy (AZ31) to austenitic stainless steel alloy (316L) was performed using pure Cu interlayers. The effect of hold time on the microstructural developments across the joint region and the related effect on bond shear strength were studied at a bonding temperature of 530°C. The bonding process took place through a sequential occurrence of solid-state diffusion of Cu into the magnesium alloy, eutectic phase formation, interlayer dissolution, and isothermal solidification. A (Mg–Cu–Al) ternary intermetallic phase formed within the joint and concentrated into the center of the bond during the solidification stage increasing the hardness value to a maximum average of VHN313 while the maximum recorded bond shear strength was 57 MPa achieving 69% of the AZ31 shear strength and about three to four times of the adhesive joints.  相似文献   

8.
铝合金LD10固-液相小变形精密扩散焊研究   总被引:3,自引:0,他引:3  
为实现铝合金LD10焊接变形率小于0.8%的精密扩散焊,分别在480℃、505℃固相条件下施加60 m in、4.5 MPa恒定轴向压应力,535℃固-液相条件下施加60 m in、4.5 MPa恒定轴向压应力与60 m in、6 MPa~0线性递减轴向压应力。焊后用扫描电镜(SEM)观察了试件基体的组织形貌、接头焊合率;用X射线衍射分析仪(XRD)分析了焊接前、后试件的相组成;测量了焊后接头的抗拉强度。结果表明,535℃的固-液相线性递减轴向压应力扩散焊与480℃、505℃的固相恒定轴向压应力扩散焊相比,在保证了小变形率0.71%的同时,显著提高了接头焊合率和机械强度(σb=218 MPa)。同时焊前的轴向织构转变为焊后粗大等轴晶形式,强化相CuA l2以晶界和三晶夹角的沉积形式取代焊前的轴向条纹聚集形式。与535℃固-液相恒压扩散焊相比,可有效地避免失稳变形与热裂纹。  相似文献   

9.
连接温度是完成瞬时液相扩散连接、保证焊接接头性能的关键参数,采用不同连接温度1210℃、1230℃和1250℃对T91/12Cr2MowVTiB进行瞬时液相扩散连接,连接压力为2MPa,保温时间为4min,结果表明,在1210~1250℃范围内,随着温度的增加,焊接接头的成分越来越均匀,连接区域的显微硬度分布逐渐趋于平缓,接头的力学性能也随之提高。  相似文献   

10.
采用Zn-15%Al实芯焊丝开展了铝合金/黄铜TIG熔钎焊搭接试验,并对接头力学性能、显微组织和界面层成分进行了测试分析。测试结果发现,焊态下,接头抗拉强度为164MPa;热处理后,接头抗拉强度为160MPa。分析结果表明,热处理后焊缝中的枝晶组织长大,部分柱状晶从界面层脱落进入焊缝,恶化了接头性能。界面层中的金属间化合物主要由CuZn5相组成,以柱状晶向焊缝生长。  相似文献   

11.
为了实现高效、稳定的金属异质材料零件的增材制造,提出了异质辅助填丝熔化极电弧增材制造方法.向熔池中同时输送H08Mn2Si低碳钢焊丝与H06MnNi3CrMoA高强钢焊丝,开展了熔敷金属成分、组织、性能调节试验.结果表明,随着高强钢质量分数增大,熔敷金属组织中粒状贝氏体和针状铁素体的数量增加,提高了熔敷金属的抗拉强度与...  相似文献   

12.
Welding dissimilar metals and alloys is essential to emerging new technologies in manufacturing industries. This process is difficult because of the formation of intermetallic layers and the variations in the chemical and mechanical properties in the weld region. This paper aimed to characterize fully and partially penetrated dissimilar metal weld joints. The welding experiments were conducted on 0.5 mm-thick dissimilar weld joints for the investigation of the effects of the process parameters on the weld joints. Variations in chemical composition, oxide formation, imperfections and mechanical properties were analyzed. Results revealed that the weld joint characteristics notably deviated from the base metal properties in terms of hardness, strength, chemical composition, oxide formation and other constituents of the weld pool region. This study offers insight into the effects of process parameters and the necessary changes in weld composition for the improvement of welds joints.  相似文献   

13.
本文根据Fiek第二定律对不同焊接工艺条件下Fe3Al/18—8异种材料扩散焊界而元素的浓度分布进行了数值计算。分析了加热温度和保温时间对界面附近元索扩散距离及形成的中间过渡层的影响,并与实际试验测定值进行了比较。实测和计算结果表明,在加热温度1333K和保温时问45~60min条件下,Fe3Al/18-8异种材料进行扩散焊接可以获得良好的中间过渡层,从而满足整个焊接接头的使用要求。  相似文献   

14.
本文根据Fick第二定律对不同焊接工艺条件下Fe3Al/18-8异种材料扩散焊界面元素的浓度分布进行了数值计算,分析了加热温度和保温时间对界面附近元素扩散距离及形成的中间过渡层的影响,并与实际试验测定值进行了比较.实测和计算结果表明,在加热温度1333K和保温时间45~60 min条件下,Fe3Al/18-8异种材料进行扩散焊接可以获得良好的中间过渡层,从而满足整个焊接接头的使用要求.  相似文献   

15.
The QP980-DP980 dissimilar steel joints were fabricated by fiber laser welding. The weld zone(WZ) was fully martensitic structure, and heat-affected zone(HAZ) contained newly-formed martensite and partially tempered martensite(TM) in both steels. The super-critical HAZ of the QP980 side had higher microhardness(~ 549.5 Hv) than that of the WZ due to the finer martensite. A softened zone was present in HAZ of QP980 and DP980, the dropped microhardness of softened zone of the QP980 and DP980 was Δ 21.8 Hv and Δ 40.9 Hv, respectively. Dislocation walls and slip bands were likely formed at the grain boundaries with the increase of strain, leading to the formation of low angle grain boundaries(LAGBs). Dislocation accumulation more easily occurred in the LAGBs than that of the HAGBs, which led to significant dislocation interaction and formation of cracks. The electron back-scattered diffraction(EBSD) results showed the fraction of LAGBs in sub-critical HAZ of DP980 side was the highest under different deformation conditions during tensile testing, resulting in the failure of joints located at the sub-critical HAZ of DP980 side. The QP980-DP980 dissimilar steel joints presented higher elongation(~ 11.21%) and ultimate tensile strength(~ 1011.53 MPa) than that of DP980-DP980 similar steel joints, because during the tensile process of the QP980-DP980 dissimilar steel joint(~ 8.2% and 991.38 MPa), the strain concentration firstly occurred on the excellent QP980 BM. Moreover, Erichsen cupping tests showed that the dissimilar welded joints had the lowest Erichsen value(~ 5.92 mm) and the peak punch force(~ 28.4 k N) due to the presence of large amount of brittle martensite in WZ and inhomogeneous deformation.  相似文献   

16.
The joining characteristics of Ti-6Al-4V with AISI 304 stainless steel by inserting a Cu interlayer was investigated in a vacuum-free diffusion bonding process. The diffusion bonds were carried out in the temperature range of 820, 850 and 870°C for 50, 70 and 90 minutes, respectively, under 1 MPa load in argon atmosphere. The joining performances of diffusion bonded Ti-6Al-4V to AISI 304 were studied experimentally. The influence of the insert layer on the microstructure-formed interface region, bonding quality and mechanical properties have also been estimated. The microstructures formed in the diffusion region were observed and determined by scanning electron microscopy (SEM). The microhardness across and perpendicular to the interface were measured and the strength of the joints were also determined with lap-shear test.  相似文献   

17.
Mg/Al合金爆炸焊连接及其界面接合机制   总被引:4,自引:0,他引:4  
采用爆炸焊接技术制备以AZ31B镁合金为基板,以6061铝合金为覆板的AZ31B/6061合金的层状复合板。对复合板界面的宏观形貌、微观组织、界面元素扩散行为及界面接合性能进行测试、分析。结果表明:AZ31B/6061合金爆炸复合板接合界面呈波状接合;靠近接合界面处的塑性变形程度最大,以孪晶和再结晶形式为主;在AZ31B一侧靠近界面处出现与界面呈45°的绝热剪切带组织,带内为动态再结晶形成的细晶粒组织;接合界面两侧的显微硬度分布为:随着距离接合界面的增大,AZ31B和6061侧的显微硬度值递减趋势;复合板的拉-剪试验结果表明,界面接合强度达193.3 MPa;复合板界面接合机制为压力焊、扩散焊及局部熔化焊综合作用的结果。  相似文献   

18.
In this study, transient liquid phase diffusion bonding parameters of Ti45Ni49Cu6 P/M components using copper interlayer were experimentally investigated in a protective (argon) atmosphere. Bonding processes of sintered Ti45Ni49Cu6 P/M compacts were carried out at various temperatures and bonding periods while bonding pressure was kept unchanged. The process pressure, 20 MPa, was selected just below those which would cause macro deformations. Optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy were employed for microstructure examinations. Shear strength and hardness (HB) of bonded specimens were measured at bond interface and parent materials for mechanical property evaluations. Along the bond interface, copper, titanium, and nickel atom mutual migration was observed. Structural tests, metallographic analysis have shown the integrity of the diffusion bonded hardware, bonded between 940 and 970°C process temperatures, for 40–60-min bonding periods.  相似文献   

19.
Diffusion bonding of high-carbon steel was carried out in vacuum brazing furnace at temperature 900–1,050 °C for 0.5 h under uniaxial load using Ni foil interlayer. Microstructure of assemblies was studied along with effect of diffusion of chemical species in reaction zone and mechanical properties. Microstructure of substrate was changed from martensite to austenite at bonding temperature and subsequently to ferrite–pearlite during cooling to ambient temperature. Diffusion zone did not exhibit formation of any intermetallic compounds. Bond strength was governed by degree of solid solution hardening and contact area of mating surfaces depending on joining parameters. In this respect, maximum ultimate strength of ~532 MPa was obtained along with shear strength of ~792 MPa for the joint processed at 1,050 °C, which was higher than literature reports on martensitic steel.  相似文献   

20.
Hybrid friction diffusion bonding (HFDB) is a solid-state bonding process first introduced by Helmholtz-Zentrum Geesthacht to join aluminum tube-to-tube sheet joints of Coil-wound heat exchangers (CWHE). This study describes how HFDB was successfully used to manufacture 316L test samples simulating tube-to-tube sheet joints of stainless steel CWHE for molten salt coolants as foreseen in several advanced nuclear- and thermal solar power plants. Engineering parameters of the test sample fabrication are presented and results from subsequent non-destructive vacuum decay leak testing and destructive tensile pull-out testing are discussed. The bonded areas of successfully fabricated samples as characterized by tube rupture during pull-out tensile testing, were further investigated using optical microscopy and scanning electron microscopy including electron backscatter diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号