首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mendelian cardiomyopathies and arrhythmias are characterized by an important genetic heterogeneity, rendering Sanger sequencing very laborious and expensive. As a proof of concept, we explored multiplex targeted high‐throughput sequencing (HTS) as a fast and cost‐efficient diagnostic method for individuals suffering from Mendelian cardiac disorders. We designed a DNA capture assay including all exons from 130 genes involved in cardiovascular Mendelian disorders and analysed simultaneously four samples by multiplexing. Two patients had familial hypertrophic cardiomyopathy (HCM) and two patients suffered from long QT syndrome (LQTS). In patient 1 with HCM, we identified two known pathogenic missense variants in the two most frequently mutated sarcomeric genes MYH7 and MYBPC. In patient 2 with HCM, a known acceptor splice site variant in MYBPC3 was found. In patient 3 with LQTS, two missense variants in the genes SCN5A and KCNQ were identified. Finally, in patient 4 with LQTS a known missense variant was found in MYBPC3, which is usually mutated in patients with cardiomyopathy. Our results showed that multiplex targeted HTS works as an efficient and cost‐effective tool for molecular diagnosis of heterogeneous disorders in clinical practice and offers new insights in the pathogenesis of these complex diseases.  相似文献   

2.
Monoclonal antibody discovery and engineering is a field that has traditionally been dominated by high‐throughput screening platforms (e.g. hybridomas and surface display). In recent years the emergence of high‐throughput sequencing has made it possible to obtain large‐scale information on antibody repertoire diversity. Additionally, it has now become more routine to perform high‐throughput sequencing on antibody repertoires to also directly discover antibodies. In this review, we provide an overview of the progress in this field to date and show how high‐throughput screening and sequencing are converging to deliver powerful new workflows for monoclonal antibody discovery and engineering.  相似文献   

3.
To provide a comprehensive data on the prevalence of mutations in Leber congenital amaurosis (LCA) candidate genes from a larger Indian cohort. Ninety‐two unrelated subjects were recruited after complete ophthalmic examination and informed consent. Targeted re‐sequencing of 20 candidate genes was performed using Agilent HaloPlex target enrichment assay and sequenced on Illumina MiSeq platform. The data were analyzed using standard bioinformatics pipeline, variants annotated, validated and segregated. Genotype‐phenotype correlation was performed for the mutation‐positive cases. Targeted next generation sequencing (NGS) for the 20 candidate genes generated data with an average sequence coverage and depth of 99.03% and 134X, respectively. Mutations were identified in 61% (56/92) of the cases, which were validated, segregated in the families and absent in 200 control chromosomes. These mutations were observed in 14/20 candidate genes and 39% (21/53) were novel. Distinct phenotypes were observed with respect to genotypes. To our knowledge, this study presents the first comprehensive mutation spectrum of LCA in a large Indian cohort. The mutation‐negative cases indicate scope for finding novel candidate gene(s) although mutations in deep intronic and regulatory regions cannot be ruled out.  相似文献   

4.
Primary immunodeficiencies (PIDs) are inborn errors of the immune system. PIDs have been characterized immunologically for the last 60 years and genetically, principally by Sanger DNA sequencing, over the last 30 years. The advent of next‐generation sequencing (NGS) in 2011, with the development of whole‐exome sequencing in particular, has facilitated the identification of previously unknown genetic lesions. NGS is rapidly generating a stream of candidate variants for an increasing number of genetically undefined PIDs. The use of NGS technology is ushering in a new era, by facilitating the discovery and characterization of new PIDs in patients with infections and other phenotypes, thereby helping to improve diagnostic accuracy. This review provides a historical overview of the identification of PIDs before NGS, and the advances and limitations of the use of NGS for the diagnosis and characterization of PIDs.  相似文献   

5.
The cellular adaptive immune system mounts a response to many solid tumours mediated by tumour‐infiltrating T lymphocytes (TILs). Basic measurements of these TILs, including total count, show promise as prognostic markers for a variety of cancers, including ovarian and colorectal. In addition, recent therapeutic advances are thought to exploit this immune response to effectively fight melanoma, with promising studies showing efficacy in additional cancers. However, many of the basic properties of TILs are poorly understood, including specificity, clonality, and spatial heterogeneity of the T‐cell response. We utilize deep sequencing of rearranged T‐cell receptor beta (TCRB) genes to characterize the basic properties of TILs in ovarian carcinoma. Due to somatic rearrangement during T‐cell development, the TCR beta chain sequence serves as a molecular tag for each T‐cell clone. Using these sequence tags, we assess similarities and differences between infiltrating T cells in discretely sampled sections of large tumours and compare to T cells from peripheral blood. Within the limits of sensitivity of our assay, the TIL repertoires show strong similarity throughout each tumour and are distinct from the circulating T‐cell repertoire. We conclude that the cellular adaptive immune response within ovarian carcinomas is spatially homogeneous and distinct from the T‐cell compartment of peripheral blood. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

6.
Amplification of DNA is required as a mandatory step during library preparation in most targeted sequencing protocols. This can be a critical limitation when targeting regions that are highly repetitive or with extreme guanine–cytosine (GC) content, including repeat expansions associated with human disease. Here, we used an amplification‐free protocol for targeted enrichment utilizing the CRISPR/Cas9 system (No‐Amp Targeted sequencing) in combination with single molecule, real‐time (SMRT) sequencing for studying repeat elements in the huntingtin (HTT) gene, where an expanded CAG repeat is causative for Huntington disease. We also developed a robust data analysis pipeline for repeat element analysis that is independent of alignment of reads to a reference genome. The method was applied to 11 diagnostic blood samples, and for all 22 alleles the resulting CAG repeat count agreed with previous results based on fragment analysis. The amplification‐free protocol also allowed for studying somatic variability of repeat elements in our samples, without the interference of PCR stutter. In summary, with No‐Amp Targeted sequencing in combination with our analysis pipeline, we could accurately study repeat elements that are difficult to investigate using PCR‐based methods.  相似文献   

7.
Spinal muscular atrophies (SMAs) are a heterogeneous group of disorders characterized by muscular atrophy, weakness, and hypotonia due to suspected lower motor neuron degeneration (LMND). In a large cohort of 3,465 individuals suspected with SMA submitted for SMN1 testing to our routine diagnostic laboratory, 48.8% carried a homozygous SMN1 deletion, 2.8% a subtle mutation, and an SMN1 deletion, whereas 48.4% remained undiagnosed. Recently, several other genes implicated in SMA/LMND have been reported. Despite several efforts to establish a diagnostic algorithm for non‐5q‐SMA (SMA without deletion or point mutations in SMN1 [5q13.2]), data from large‐scale studies are not available. We tested the clinical utility of targeted sequencing in non‐5q‐SMA by developing two different gene panels. We first analyzed 30 individuals with a small panel including 62 genes associated with LMND using IonTorrent‐AmpliSeq target enrichment. Then, additional 65 individuals were tested with a broader panel encompassing up to 479 genes implicated in neuromuscular diseases (NMDs) with Agilent‐SureSelect target enrichment. The NMD panel provided a higher diagnostic yield (33%) than the restricted LMND panel (13%). Nondiagnosed cases were further subjected to exome or genome sequencing. Our experience supports the use of gene panels covering a broad disease spectrum for diseases that are highly heterogeneous and clinically difficult to differentiate.  相似文献   

8.
Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one‐third of disease‐causing mutations are thought to affect pre‐mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large‐scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high‐throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue‐specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high‐throughput methods for variant interpretation.  相似文献   

9.
Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder which represents rod photoreceptor dysfunction or signal transmission defect from photoreceptors to adjacent bipolar cells. Patients displaying photoreceptor dysfunction show a Riggs‐electroretinogram (ERG) while patients with a signal transmission defect show a Schubert–Bornschein ERG. The latter group is subdivided into complete or incomplete (ic) CSNB. Only few CSNB cases with Riggs‐ERG and only one family with a disease‐causing variant in SLC24A1 have been reported. Whole‐exome sequencing (WES) in a previously diagnosed icCSNB patient identified a homozygous nonsense variant in SLC24A1. Indeed, re‐investigation of the clinical data corrected the diagnosis to Riggs‐form of CSNB. Targeted next‐generation sequencing (NGS) identified compound heterozygous deletions and a homozygous missense variant in SLC24A1 in two other patients, respectively. ERG abnormalities varied in these three cases but all patients had normal visual acuity, no myopia or nystagmus, unlike in Schubert–Bornschein‐type of CSNB. This confirms that SLC24A1 defects lead to CSNB and outlines phenotype/genotype correlations in CSNB subtypes. In case of unclear clinical characteristics, NGS techniques are helpful to clarify the diagnosis.  相似文献   

10.
Microsatellite instability (MSI) testing of colorectal cancers (CRCs) is used to screen for Lynch syndrome (LS), a hereditary cancer‐predisposition, and can be used to predict response to immunotherapy. Here, we present a single‐molecule molecular inversion probe and sequencing‐based MSI assay and demonstrate its clinical validity according to existing guidelines. We amplified 24 microsatellites in multiplex and trained a classifier using 98 CRCs, which accommodates marker specific sensitivities to MSI. Sample classification achieved 100% concordance with the MSI Analysis System v1.2 (Promega) in three independent cohorts, totaling 220 CRCs. Backward–forward stepwise selection was used to identify a 6‐marker subset of equal accuracy to the 24‐marker panel. Assessment of assay detection limits showed that the 24‐marker panel is marginally more robust to sample variables than the 6‐marker subset, detecting as little as 3% high levels of MSI DNA in sample mixtures, and requiring a minimum of 10 template molecules to be sequenced per marker for >95% accuracy. BRAF c.1799 mutation analysis was also included to streamline LS testing, with all c.1799T>A variants being correctly identified. The assay, therefore, provides a cheap, robust, automatable, and scalable MSI test with internal quality controls, suitable for clinical cancer diagnostics.  相似文献   

11.
12.
Accurate genotyping is important for genetic testing. Sanger sequencing‐based typing is the gold standard for genotyping, but it has been underused, due to its high cost and low throughput. In contrast, short‐read sequencing provides inexpensive and high‐throughput sequencing, holding great promise for reaching the goal of cost‐effective and high‐throughput genotyping. However, the short‐read length and the paucity of appropriate genotyping methods, pose a major challenge. Here, we present RCHSBT—reliable, cost‐effective and high‐throughput sequence based typing pipeline—which takes short sequence reads as input, but uses a unique variant calling, haploid sequence assembling algorithm, can accurately genotype with greater effective length per amplicon than even Sanger sequencing reads. The RCHSBT method was tested for the human MHC loci HLA‐A, HLA‐B, HLA‐C, HLA‐DQB1, and HLA‐DRB1, upon 96 samples using Illumina PE 150 reads. Amplicons as long as 950 bp were readily genotyped, achieving 100% typing concordance between RCHSBT‐called genotypes and genotypes previously called by Sanger sequence. Genotyping throughput was increased over 10 times, and cost was reduced over five times, for RCHSBT as compared with Sanger sequence genotyping. We thus demonstrate RCHSBT to be a genotyping method comparable to Sanger sequencing‐based typing in quality, while being more cost‐effective, and higher throughput.  相似文献   

13.
Characterizing the binding sites of monoclonal antibodies (mAbs) on protein targets, their ‘epitopes’, can aid in the discovery and development of new therapeutics, diagnostics and vaccines. However, the speed of epitope mapping techniques has not kept pace with the increasingly large numbers of mAbs being isolated. Obtaining detailed epitope maps for functionally relevant antibodies can be challenging, particularly for conformational epitopes on structurally complex proteins. To enable rapid epitope mapping, we developed a high‐throughput strategy, shotgun mutagenesis, that enables the identification of both linear and conformational epitopes in a fraction of the time required by conventional approaches. Shotgun mutagenesis epitope mapping is based on large‐scale mutagenesis and rapid cellular testing of natively folded proteins. Hundreds of mutant plasmids are individually cloned, arrayed in 384‐well microplates, expressed within human cells, and tested for mAb reactivity. Residues are identified as a component of a mAb epitope if their mutation (e.g. to alanine) does not support candidate mAb binding but does support that of other conformational mAbs or allows full protein function. Shotgun mutagenesis is particularly suited for studying structurally complex proteins because targets are expressed in their native form directly within human cells. Shotgun mutagenesis has been used to delineate hundreds of epitopes on a variety of proteins, including G protein‐coupled receptor and viral envelope proteins. The epitopes mapped on dengue virus prM/E represent one of the largest collections of epitope information for any viral protein, and results are being used to design better vaccines and drugs.  相似文献   

14.
Rapid screening of methicillin‐resistant Staphylococcus aureus (MRSA) colonization prior to hospital admittance is important to reduce nosocomial infections and health care costs. Molecular detection of mecA and S. aureus specific target genes has become widely established for this purpose. However, there are still limitations in potential for high‐throughput screening in the methods described. We have compared the time aspects and workload of four different DNA preparation platforms, resulting in an automated and simple MRSA screening method which combines two liquid handling systems and a simple lysis buffer. We have further transferred our in‐house dual real‐time PCR to a fast‐PCR protocol, reducing the time and labour spent on these samples to a minimum.  相似文献   

15.
Epstein‐Barr virus (EBV) has long been suggested as a pathogen in multiple sclerosis (MS). Here, we used high‐throughput sequencing to determine the diversity, compartmentalization, persistence, and EBV‐reactivity of the T‐cell receptor (TCR) repertoires in MS. TCR‐β genes were sequenced in paired samples of cerebrospinal fluid (CSF) and blood from patients with MS and controls with other inflammatory neurological diseases. The TCR repertoires were highly diverse in both compartments and patient groups. Expanded T‐cell clones, represented by TCR‐β sequences >0.1%, were of different identity in CSF and blood of MS patients, and persisted for more than a year. Reference TCR‐β libraries generated from peripheral blood T cells reactive against autologous EBV‐transformed B cells were highly enriched for public EBV‐specific sequences and were used to quantify EBV‐reactive TCR‐β sequences in CSF. TCR‐β sequences of EBV‐reactive CD8+ T cells, including several public EBV‐specific sequences, were intrathecally enriched in MS patients only, whereas those of EBV‐reactive CD4+ T cells were also enriched in CSF of controls. These data provide evidence for a clonally diverse, yet compartmentalized and persistent, intrathecal T‐cell response in MS. The presented strategy links TCR sequence to intrathecal T‐cell specificity, demonstrating enrichment of EBV‐reactive CD8+ T cells in MS.  相似文献   

16.
The heterogeneous manifestations of MYH9‐related disorder (MYH9‐RD), characterized by macrothrombocytopenia, Döhle‐like inclusion bodies in leukocytes, bleeding of variable severity with, in some cases, ear, eye, kidney, and liver involvement, make the diagnosis for these patients still challenging in clinical practice. We collected phenotypic data and analyzed the genetic variants in more than 3,000 patients with a bleeding or platelet disorder. Patients were enrolled in the BRIDGE‐BPD and ThromboGenomics Projects and their samples processed by high throughput sequencing (HTS). We identified 50 patients with a rare variant in MYH9. All patients had macrothrombocytes and all except two had thrombocytopenia. Some degree of bleeding diathesis was reported in 41 of the 50 patients. Eleven patients presented hearing impairment, three renal failure and two elevated liver enzymes. Among the 28 rare variants identified in MYH9, 12 were novel. HTS was instrumental in diagnosing 23 patients (46%). Our results confirm the clinical heterogeneity of MYH9‐RD and show that, in the presence of an unclassified platelet disorder with macrothrombocytes, MYH9‐RD should always be considered. A HTS‐based strategy is a reliable method to reach a conclusive diagnosis of MYH9‐RD in clinical practice.  相似文献   

17.
We describe a high-throughput screening system to detect interactions between leucocyte surface proteins, taking into account that these interactions are usually of very low affinity. The method involves producing the extracellular regions of leucocyte proteins with tags so that they can be bound to nanoparticles to provide an avid reagent to screen over an array of 36 similar proteins immobilized using the Proteon™ XPR36 with detection by surface plasmon resonance. The system was tested using established interactions that could be detected without spurious binding. The ability to detect new interactions was shown by identifying a new interaction between carcinoembryonic antigen-related cell adhesion molecule 1 and carcinoembryonic antigen-related cell adhesion molecule 8.  相似文献   

18.
Emerging viruses such as Ebola virus (EBOV), Lassa virus (LASV), and avian influenza virus H5N1 (AIV) are global health concerns. Since there is very limited options (either vaccine or specific therapy) approved for humans against these viruses, there is an urgent need to develop prophylactic and therapeutic treatments. Previously we reported a high‐throughput screening (HTS) protocol to identify entry inhibitors for three highly pathogenic viruses (EBOV, LASV, and AIV) using a human immunodeficiency virus–based pseudotyping platform which allows us to perform the screening in a BSL‐2 facility. In this report, we have adopted this screening protocol to evaluate traditional Chinese Medicines (TCMs) in an effort to discover entry inhibitors against these viruses. Here we show that extracts of the following Chinese medicinal herbs exhibit potent anti‐Ebola viral activities: Gardenia jasminoides Ellis, Citrus aurantium L., Viola yedoensis Makino, Prunella vulgaris L., Coix lacryma‐jobi L. var. mayuen (Roman.) Stapf, Pinellia ternata (Thunb.) Breit., and Morus alba L. This study represents a proof‐of‐principle investigation supporting the suitability of this assay for rapid screening TCMs and identifying putative entry inhibitors for these viruses. J. Med. Virol. 89:908–916, 2017 . © 2016 Wiley Periodicals, Inc.
  相似文献   

19.
Neural tube defects (NTDs) affecting the brain (anencephaly) are lethal before or at birth, whereas lower spinal defects (spina bifida) may lead to lifelong neurological handicap. Collectively, NTDs rank among the most common birth defects worldwide. This study focuses on anencephaly, which despite having a similar frequency to spina bifida and being the most common type of NTD observed in mouse models, has had more limited inclusion in genetic studies. A genetic influence is strongly implicated in determining risk of NTDs and a molecular diagnosis is of fundamental importance to families both in terms of understanding the origin of the condition and for managing future pregnancies. Here we used a custom panel of 191 NTD candidate genes to screen 90 patients with cranial NTDs (n = 85 anencephaly and n = 5 craniorachischisis) with a targeted exome sequencing platform. After filtering and comparing to our in‐house control exome database (N = 509), we identified 397 rare variants (minor allele frequency, MAF < 1%), 21 of which were previously unreported and predicted damaging. This included 1 frameshift (PDGFRA), 2 stop‐gained (MAT1A; NOS2) and 18 missense variations. Together with evidence for oligogenic inheritance, this study provides new information on the possible genetic causation of anencephaly.  相似文献   

20.
Whole‐exome sequencing (WES) is widely used to detect genetic mutations that cause Mendelian diseases, and has been successfully applied in combination with preimplantation genetic diagnosis (PGD) to avoid the transmission of genetic defects. We investigated 40 nonconsanguineous families with unexplained, recurrent fetal malformations (two or more malformed fetuses) from May 2016 to December 2018. Using Trio‐WES, we identified 32 disease‐associated variants in 40 families (80% positive rate), which were subsequently verified. Known Mendelian diseases were identified in 12 families (30%), highly suspected Mendelian diseases in 12 families (30%), variants with uncertain significance in 8 families (20%), and no noticeable variants for 8 families (20%). Further analysis showed variants in 22 genes may cause fetal malformations. Four gene variants were detected in fetuses for the first time, which expanded the spectrum of the disease phenotype. Two novel candidate genes may be related to fetal malformations. Of 26 couples receiving PGD on disease‐associated genes, 3 healthy newborns were delivered, and 4 couples are undergoing pregnancies. We reported the fetal data and developed an optimized genetic testing strategy. Our finding strongly suggests the presence of single gene Mendelian disorders in 60% of those families, and PGD services for couples to have healthy babies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号