首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A library of fluorescently labeled protein kinase C (PKC) peptide substrates was prepared to identify a phosphorylation-induced reporter of protein kinase activity. The lead PKC substrate displays a 2.5-fold change in fluorescence intensity upon phosphorylation. PKC activity is readily sampled in cell lysates containing the activated PKCs. Immunodepletion of conventional PKCs from the cell lysate eliminates the fluorescence response, suggesting that this peptide substrate is selectively phosphorylated by PKCalpha, beta, and gamma. Finally, living cells microinjected with the peptide substrate exhibit a 2-fold increase in fluorescence intensity upon exposure to a PKC activator. These results suggest that peptide-based protein kinase biosensors may be useful in monitoring the temporal and spatial dynamics of PKC activity in living cells.  相似文献   

2.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The NR1 subunit of the NMDA receptor has two serines (S890 and S896) whose phosphorylation by protein kinase C (PKC) differentially modulates NMDA receptor trafficking and clustering. It is not known which PKC isoforms phosphorylate these serines. In primary cultures of cerebellar neurons, we examined which PKC isoforms are responsible for the phosphorylation S890 and S896. We used specific inhibitors of PKC isoforms and antibodies recognizing specifically phosphorylated S890 or S896. The results show that PKC alpha phosphorylates preferentially S896 and PKC gamma preferentially S890. Activation of type I metabotropic glutamate receptors (mGluRs) with DHPG (3,5-dihyidroxy-phenylglycine) activates PKC gamma but not PKC alpha or beta. We found that activation of mGluRs by DHPG increases S890 but not S896 phosphorylation, supporting a role for PKC gamma in the physiological modulation of S890 phosphorylation. It is also shown that the pool of NR1 subunits present in the membrane surface contains phosphorylated S890 but not phosphorylated S896. This supports that differential phosphorylation of S890 and S896 by different PKC isoforms modulates cellular distribution of NMDA receptors and may also contribute to the selective modulation of NMDA receptor function and intracellular localization.  相似文献   

4.
Regulation of endothelial nitric oxide synthase by protein kinase C   总被引:3,自引:0,他引:3  
Endothelial nitric oxide synthase (eNOS) is a key enzyme in nitric oxide-mediated signal transduction in mammalian cells. Its catalytic activity is regulated both by regulatory proteins, such as calmodulin and caveolin, and by a variety of post-translational modifications including phosphorylation and acylation. We have previously shown that the calmodulin-binding domain peptide is a good substrate for protein kinase C [Matsubara, M., Titani, K., and Taniguchi, H. (1996) Biochemistry 35, 14651-14658]. Here we report that bovine eNOS protein is phosphorylated at Thr497 in the calmodulin-binding domain by PKC both in vitro and in vivo, and that the phosphorylation negatively regulates eNOS activity. A specific antibody that recognizes only the phosphorylated form of the enzyme was raised against a synthetic phosphopeptide corresponding to the phosphorylated domain. The antibody recognized eNOS immunoprecipitated with anti-eNOS antibody from the soluble fraction of bovine aortic endothelial cells, and the immunoreactivity increased markedly when the cells were treated with phorbol 12-myristate 13-acetate. PKC phosphorylated eNOS specifically at Thr497 with a concomitant decrease in the NOS activity. Furthermore, the phosphorylated eNOS showed reduced affinity to calmodulin. Therefore, PKC regulates eNOS activity by changing the binding of calmodulin, an eNOS activator, to the enzyme.  相似文献   

5.
6.
GABA(A) receptors are critical mediators of fast synaptic inhibition in the brain, and the predominant receptor subtype in the central nervous system is believed to be a pentamer composed of alpha, beta, and gamma subunits. Previous studies on recombinant receptors have shown that protein kinase C (PKC) and PKA directly phosphorylate intracellular serine residues within the receptor beta subunit and modulate receptor function. However, the relevance of this regulation for neuronal receptors remains poorly characterized. To address this critical issue, we have studied phosphorylation and functional modulation of GABA(A) receptors in cultured cortical neurons. Here we show that the neuronal beta3 subunit is basally phosphorylated on serine residues by a PKC-dependent pathway. PKC inhibitors abolish basal phosphorylation, increasing receptor activity, whereas activators of PKC enhance beta3 phosphorylation with a concomitant decrease in receptor activity. PKA activators were shown to increase the phosphorylation of the beta3 subunit only in the presence of PKC inhibitors. We also show that the main sites of phosphorylation within the neuronal beta3 subunit are likely to include Ser-408 and Ser-409, residues that are important for the functional modulation of beta3-containing recombinant receptors. Furthermore, PKC activation did not change the total number of GABA(A) receptors in the plasma membrane, suggesting that the effects of PKC activation are on the gating or conductance of the channel. Together, these results illustrate that cell-signaling pathways that activate PKC may have profound effects on the efficacy of synaptic inhibition by directly modulating GABA(A) receptor function.  相似文献   

7.
Coronin-1, a hematopoietic cell-specific actin-binding protein, is thought to be involved in the phagocytic process through its interaction with actin filaments. The dissociation of coronin-1 from phagosomes after its transient accumulation on the phagosome surface is associated with lysosomal fusion. We previously reported that 1) coronin-1 is phosphorylated by protein kinase C (PKC), 2) coronin-1 has two phosphorylation sites, Ser-2 and Thr-412, and 3) Thr-412 of coronin-1 is phosphorylated during phagocytosis. In this study, we examined which PKC isoform is responsible for the phosphorylation of coronin-1 at Thr-412 by using isotype-specific PKC inhibitors and small interfering RNAs (siRNAs). Thr-412 phosphorylation of coronin-1 was suppressed by Gö6976, an inhibitor of PKCα and PKCβI. This phosphorylation was attenuated by siRNA for PKCα, but not by siRNA for PKCβ. Furthermore, Thr-412 of coronin-1 was phosphorylated by recombinant PKCα in vitro, but not by recombinant PKCβ. We next examined the effects of Gö6976 on the intracellular distribution of coronin-1 in HL60 cells during phagocytosis. The confocal fluorescence microscopic observation showed that coronin-1 was not dissociated from phagosomes in Gö6976-treated cells. These results indicate that phosphorylation of coronin-1 at Thr-412 by PKCα regulates intracellular distribution during phagocytosis.  相似文献   

8.
A 20-kDa DNA-binding protein that binds the AT-rich sequences within the promoters of the brain-specific protein kinase C (PKC) gamma and neurogranin/RC3 genes has been characterized as chromosomal nonhistone high-mobility-group protein (HMG)-I. This protein is a substrate of PKC alpha, beta, gamma, and delta but is poorly phosphorylated by PKC epsilon and zeta. Two major (Ser44 and Ser64) and four minor phosphorylation sites have been identified. The extents of phosphorylation of Ser44 and Ser64 were 1:1, whereas those of the four minor sites all together were <30% of the major one. These PKC phosphorylation sites are distinct from those phosphorylated by cdc2 kinase, which phosphorylates Thr53 and Thr78. Phosphorylation of HMG-I by PKC resulted in a reduction of DNA-binding affinity by 28-fold as compared with 12-fold caused by the phosphorylation with cdc2 kinase. HMG-I could be additively phosphorylated by cdc2 kinase and PKC, and the resulting doubly phosphorylated protein exhibited a >100-fold reduction in binding affinity. The two cdc2 kinase phosphorylation sites of HMG-I are adjacent to the N terminus of two of the three predicted DNA-binding domains. In comparison, one of the major PKC phosphorylation sites, Ser64, is adjacent to the C terminus of the second DNA-binding domain, whereas Ser44 is located within the spanning region between the first and second DNA-binding domains. The current results suggest that phosphorylation of the mammalian HMG-I by PKC alone or in combination with cdc2 kinase provides an effective mechanism for the regulation of HMG-I function.  相似文献   

9.
The cationic amphiphile, cholesteryl-3-carboxyamidoethylene-trimethylammonium iodide, can alter the substrate specificity of protein kinase C (PKC). The phosphorylation of histone catalyzed by PKC requires the binding of the enzyme to phospholipid vesicles. This cationic amphiphile reduces both the binding of PKC to lipid and as a consequence its rate of phosphorylation of histone. In contrast, PKC bound to large unilamellar vesicles (LUVs) composed of 50 mol % POPS, 20 mol % POPC, and 30 mol % of this amphiphile catalyzes protamine sulfate phosphorylation by an almost 4 fold greater rate. This activation requires phosphatidylserine (PS) and is inhibited by Ca2+. The extent of activation is affected by the time of incubation of PKC with LUVs. This data suggests a novel mechanism by which PKC-dependent signal transduction pathways may be altered by altering the protein targets of this enzyme.  相似文献   

10.
Type A gamma-aminobutyric acid receptors (GABA(A)), the major sites of fast synaptic inhibition in the brain, are believed to be composed predominantly of alpha, beta, and gamma subunits. Although cell surface expression is essential for GABA(A) receptor function, little is known regarding its regulation. To address this issue, the membrane stability of recombinant alpha(1)beta(2) or alpha(1)beta(2)gamma(2) receptors was analyzed in human embryonic kidney cells. Alpha(1)beta(2)gamma(2) but not alpha(1)beta(2) receptors were found to recycle constitutively between the cell surface and a microtubule-dependent, perinuclear endosomal compartment. Similar GABA(A) receptor endocytosis was also seen in cultured hippocampal and cortical neurons. GABA(A) receptor surface levels were reduced upon protein kinase C (PKC) activation. Like basal endocytosis, this response required the gamma(2) subunit but not receptor phosphorylation. Although inhibiting PKC activity did not block alpha(1)beta(2)gamma(2) receptor endocytosis, it did prevent receptor down-regulation, suggesting that PKC activity may block alpha(1)beta(2)gamma(2) receptor recycling to the cell surface. In agreement with this observation, blocking recycling from endosomes with wortmannin selectively reduced surface levels of gamma(2)-containing receptors. Together, our results demonstrate that the surface stability of GABA(A) receptors can be dynamically and specifically regulated, enabling neurons to modulate cell surface receptor number upon the appropriate cues.  相似文献   

11.
The Alzheimer's disease-associated presenilin (PS) 1 is intimately involved in gamma-secretase cleavage of beta-amyloid precursor protein and other proteins. In addition, PS1 plays a role in beta-catenin signaling and in the regulation of apoptosis. Here we demonstrate that phosphorylation of PS1 is regulated by two independent signaling pathways involving protein kinase (PK) A and PKC and that both kinases can directly phosphorylate the large hydrophilic domain of PS1 in vitro and in cultured cells. A phosphorylation site at serine residue 346 was identified that is selectively phosphorylated by PKC but not by PKA. This site is localized within a recognition motif for caspases, and phosphorylation strongly inhibits proteolytic processing of PS1 by caspase activity during apoptosis. Moreover, PS1 phosphorylation reduces the progression of apoptosis. Our data indicate that phosphorylation/dephosphorylation at the caspase recognition site provides a mechanism to reversibly regulate properties of PS1 in apoptosis.  相似文献   

12.
Phosducin (Pdc) is a G protein beta gamma dimer (G beta gamma) binding protein, highly expressed in retinal photoreceptor and pineal cells, yet whose physiological role remains elusive. Light controls the phosphorylation of Pdc in a cAMP and Ca(2+)-dependent manner, and phosphorylation in turn regulates the binding of Pdc to G(t)beta gamma or 14-3-3 proteins in vitro. To directly examine the phosphorylation of Pdc in intact retina, we prepared antibodies specific to the three principal phosphorylation sites (Ser-54, Ser-73, and Ser-106) and measured the kinetics of phosphorylation/dephosphorylation during light/dark adaptation and the subsequent effects on G(t)beta gamma binding. Ser-54 phosphorylation increased slowly (t((1/2)) approximately 90 min) during dark adaptation to approximately 70% phosphorylated and decreased rapidly (t((1/2)) approximately 2 min) during light adaptation to less than 20% phosphorylated. Ser-73 phosphorylation increased much faster during dark adaptation (t((1/2)) approximately 3 min) to approximately 50% phosphorylated and decreased more slowly during light adaptation (t((1/2)) approximately 9 min) to less than 20% phosphorylated. The Ca(2+) chelator BAPTA-AM blocked Ser-54 phosphorylation during dark adaptation but had no effect on Ser-73 phosphorylation. In contrast, Ser-106 was not phosphorylated in either the light or dark. Importantly, G beta gamma binding to Pdc was enhanced by Ca(2+) chelation and the binding kinetics closely paralleled those of Ser-54 dephosphorylation, indicating that Ser-54 phosphorylation controls G(t)beta gamma binding in vivo. These results suggest a pivotal role of Ser-54 and Ser-73 phosphorylation in determining the interactions of Pdc with its binding partners, G(t)beta gamma and 14-3-3 protein, which may regulate the light-dependent translocation of the photoreceptor G protein.  相似文献   

13.
Dihydropyridine-sensitive Ca2+ channels from skeletal muscle are multisubunit proteins and are regulated by protein phosphorylation. The purpose of this study was to determine: 1) which subunits are the preferential targets of various protein kinases when the channels are phosphorylated in vitro in their native membrane-bound state and 2) the consequences of these phosphorylations in functional assays. Using as substrates channels present in purified transverse (T) tubule membranes, cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a multifunctional Ca2+/calmodulin-dependent protein kinase (CaM protein kinase) preferentially phosphorylated the 165-kDa alpha 1 subunit to an extent that was 2-5-fold greater than the 52-kDa beta subunit. A protein kinase endogenous to the skeletal muscle membranes preferentially phosphorylated the beta peptide and showed little activity toward the alpha 1 subunit; however, the extent of phosphorylation was low. Reconstitution of partially purified channels into liposomes was used to determine the functional consequences of phosphorylation by these kinases. Phosphorylation of channels by PKA or PKC resulted in an activation of the channels that was observed as increases in both the rate and extent of Ca2+ influx. However, phosphorylation of channels by either the CaM protein kinase or the endogenous kinase in T-tubule membranes was without effect. Phosphorylation did not affect the sensitivities of the channels toward the dihydropyridines. Taken together, the results demonstrate that the alpha 1 subunit is the preferred substrate of PKA, PKC, and CaM protein kinase when the channels are phosphorylated in the membrane-bound state and that phosphorylation of the channels by PKA and PKC, but not by CaM protein kinase or an endogenous T-tubule membrane protein kinase, results in activation of the dihydropyridine-sensitive Ca2+ channels from skeletal muscle.  相似文献   

14.
15.
Rat brain type II (beta) protein kinase C (PKC) was phosphorylated by rat lung casein kinase II (CK-II). Neither type I (gamma) nor type III (alpha) PKC was significantly phosphorylated by CK-II. CK-II incorporated 0.2-0.3 mol of phosphate into 1 mol of type II PKC. This phosphate was located at the single seryl residue (Ser-11) in the V1-variable region of the regulatory domain of the PKC molecule. A glutamic acid cluster was located at the carboxyl-terminal side of Ser-11, showing the consensus sequence for phosphorylation by CK-II. The velocity of this phosphorylation was enhanced by the addition of Ca2+, diolein, and phosphatidylserine, which are all required for the activation of PKC. Phosphorylation of casein or synthetic oligopeptides by CK-II was not affected by Ca2+, diolein, or phosphatidylserine. Available evidence suggests that CK-II phosphorylates preferentially the activated form of type II PKC. It remains unknown, however, whether this reaction has a physiological significance.  相似文献   

16.
Protein kinase C (PKC) I (gamma), II (beta) and III (alpha) subspecies are all activated by 1,1-di-(p-hydroxyphenyl)ethylene derivatives (DPE) at micromolar concentrations. This PKC activation depends on the presence of both Ca2+ and phosphatidylserine (PS) but does not require diacylglycerol (DG). DPEs enhance PKC activity at low PS concentrations, but not at saturating PS concentrations. Like DG, DPEs increase the apparent affinity of PKC for PS as well as for Ca2+, but lead to a decrease in the catalytic activity (Vmax). In the presence of saturating DG concentrations, DPEs exhibit an inhibitory action. The derivatives also inhibit the activity of the proteolytic fragment of PKC, protein kinase M. It is concluded that DPEs are mixed-type inhibitors, probably interacting with the catalytic domain of the enzyme.  相似文献   

17.
Protein kinase C (PKC) I (gamma), II (beta) and III (alpha) subspecies' activities are inhibited by three triphenylacrylonitrile (TPE) antiestrogens at micromolar concentrations. TPE 1 (having a p-hydroxy and a p-diethylaminoethoxy group on the 3-, and 3'- phenyl rings respectively) and TPE 2 (having a p-diethylaminoethoxy group on both the 3-, and 3'- phenyl rings) are competitive with the mechanism of activation by phosphatidylserine (PS). TPE 3 (having p-hydroxy groups on each of the three phenyl rings) is non-competitive with PS and inhibits the Ca2+- and PS-independent phosphorylation of protamine sulfate by PKC subspecies. This evidence suggests that PKC activity can be inhibited by different routes depending on the TPE structure: diethylaminoethoxy side chain-substituted TPEs (TPE 1 and 2) interact with PS as well as with the regulatory domain, whereas the trihydroxylated derivative (TPE 3) inhibits the enzyme by interacting with the catalytically active site.  相似文献   

18.
Acetylcholine receptor (AChR) from Torpedo electric organ in its membrane-bound or solubilized form is phosphorylated by the Ca2+/phospholipid-dependent protein kinase (PKC). The subunit specificity for PKC is different from that observed for cAMP-dependent protein kinase (PKA). Whereas PKC phosphorylates predominantly the delta subunit and the phosphorylation of the gamma subunit by this enzyme is very low, PKA phosphorylates both subunits to a similar high extent. We have extended our phosphorylation studies to a synthetic peptide from the gamma subunit, corresponding to residues 346-359, which contains a consensus PKA phosphorylation site. This synthetic peptide is phosphorylated by both PKA and PKC, suggesting that in the intact receptor both kinases may phosphorylate the gamma subunit at a similar site, as has been previously demonstrated by us for the delta subunit [Safran, A., et al. (1987) J. Biol. Chem. 262, 10506-10510]. The diverse pattern of phosphorylation of AChR by PKA and PKC may play a role in the regulation of its function.  相似文献   

19.
We have examined the phosphorylation of bovine microtubule-associated protein 4 (MAP4), formerly named MAP-U, by protein kinase C (PKC). When MAP4 was incubated with PKC, about 1 mol of phosphate was incorporated/mol of MAP4. Phosphorylation of MAP4 caused a remarkable decrease in the ability of the MAP to stimulate microtubule assembly. MAP4 consists of an amino-terminal projection domain and a carboxyl-terminal microtubule-binding domain. The carboxyl-terminal domain is subdivided into a Pro-rich region and an assembly-promoting (AP) sequence region containing four tandem repeats of AP sequence that is conserved in MAP4, MAP2, and tau [Aizawa et al. (1990) J. Biol. Chem. 265, 13849-13855]. In order to identify the site of MAP4 phosphorylated by PKC, a series of expressed MAP4 fragments was prepared and treated with the kinase. A fragment corresponding to the Pro-rich region (P fragment) was phosphorylated, while fragments corresponding to the projection domain and the AP sequence region were not. In addition, chymotryptic digestion of an authentic MAP4 prephosphorylated by PKC revealed that phosphate was incorporated almost exclusively into a 27-kDa fragment containing the carboxyl-terminal half of the Pro-rich region. We investigated the phosphorylation site in MAP4 using the P fragment and found that Ser815 was phosphorylated almost exclusively. We conclude that the phosphorylation of a single Ser residue in the Pro-rich region negatively regulates the assembly-promoting activity of MAP4.  相似文献   

20.
The Mr = 38,300 polypeptide of the purified recombinant rat DNA polymerase beta served as an excellent substrate for protein kinase C (PKC) in vitro but not for the catalytic subunit of cAMP-dependent protein kinase. The phosphorylation by PKC resulted in inactivation of DNA polymerase beta activity, and recovery was achieved by dephosphorylation with alkaline phosphatase. Since the phosphorylated DNA polymerase beta was retained with use of a single-stranded DNA-cellulose column, inactivation might occur at a site different from that for the DNA binding. Amino acid sequence analysis of the phosphopeptides revealed that the phosphorylated sites were 2 serine residues at positions 44 and 55 from the NH2 terminus, either or both of which might be involved in the catalytic activity of DNA polymerase beta. Thus, the inactivation of the DNA repair enzyme, DNA polymerase beta, by PKC may be an important process in the modification of DNA metabolism in the nucleus through signal transduction processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号