首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study concentrates on analytical evaluation of the effect of external confinement using fiber reinforced polymers (FRP) sheets on the response of concrete rectangular columns designed for gravity load only and having spliced longitudinal reinforcement at the column base. A general analytical scheme for evaluating the strength capacity and ductility of the columns under combined flexural–axial loads was developed. The analysis takes into account the bond strength degradation of the spliced reinforcement with increase in lateral load by incorporating a generalized bond stress–slip law, and considers the effect of FRP confinement on the stress–strain response of concrete material. Particular emphasis is placed in the analysis on the slip response of the spliced bars and the consequent fixed end rotation that develops at the column base. Results predicted by the analysis showed very good agreement with limited experimental data. A parametric evaluation was carried out to evaluate the effect of different design and strength parameters on the column response under lateral load. Without confinement, the columns suffered premature bond failure and, consequently, low flexural strength capacity. Confining the concrete in the columns end zone at the splice location with FRP sheets enhanced the bond strength capacity of the spliced reinforcement, increased the steel stress that can be mobilized before bond failure occurs, and consequently improved the flexural strength capacity and ductility of the columns. A general design equation, expressed as a function of the main parameters that influence the bond strength capacity between spliced steel bars and FRP confined concrete, is proposed to calculate the area of FRP sheets needed for strengthening of the subject columns.  相似文献   

2.
A set of column-footing subassemblies were prepared to investigate construction feasibility and seismic performance of structural joints for concrete-filled fiber reinforced polymer (FRP) tubes (CFFT) as bridge substructure. Based on the common practices of the precast industry and previous research on CFFT, the test matrix included a control reinforced concrete (RC) column and three CFFT columns, all with similar RC footings. The three CFFT columns included a cast-in-place CFFT column with starter bars, a precast CFFT column with grouted starter bars, and a precast CFFT column with unbonded posttensioned rods. The columns were subjected to a constant axial load and a pseudostatic lateral load. All proposed joints proved feasible in construction and robust under extreme load conditions. FRP tube, when secured properly in the footing, showed great influence on the seismic performance of the column by providing both longitudinal reinforcement and hoop confinement to the core concrete. The CFFT columns exhibited significant improvement over traditional RC columns in both ultimate strength and ductility. The study also showed that practices of the precast concrete industry can be easily and effectively implemented for the CFFT column construction.  相似文献   

3.
This paper presents results of an experimental study on the behavior of square and rectangular concrete-filled fiber reinforced polymer (FRP) tubes (CFFTs) under concentric compression. FRP tubes were designed as column confinement reinforcement and were manufactured using unidirectional carbon fiber sheets with fibers oriented in the hoop direction. The effects of the thickness and corner radius of the tube, sectional aspect ratio, and concrete strength on the axial behavior of CFFTs were investigated experimentally. Test results indicate that FRP confinement leads to substantial improvement in the ductility of both square and rectangular columns. Confinement provided by the FRP tube may also improve the axial load-carrying capacity of the square and rectangular columns if the confinement effectiveness of the FRP tube is sufficiently high. The results also indicate that the confinement effectiveness of FRP tubes is higher in square columns than in rectangular columns, and in both sections the effectiveness of confinement increases with the corner radius. Furthermore, for a given confinement level, improvement observed on the axial behavior of concrete due to confinement decreases with increasing concrete strength.  相似文献   

4.
This paper investigates the structural retrofit of deteriorated reinforced concrete lighting poles using wet layup of fiber reinforced polymer (FRP) sheets. The study comprised of four full-scale Class B damaged poles and one full-scale Class C undamaged pole. Each pole was 14,000 mm long with a base diameter of 350 mm linearly tapered to a tip diameter of 165 mm. The damaged poles were reinforced with nine No. 10 steel bars each, whereas the undamaged pole had four prestressed steel strands of 3/8 in. (9.5 mm) diameter. Four different in situ applicable repair schemes, one for each damaged pole, involving the application of E-glass or carbon FRP lateral confining wraps only (unidirectional) or coupled with additional longitudinal flexure sheets (bidirectional) were investigated. The adequacy of the retrofit works was checked through full-scale bending test of the poles in accordance with specification of the Canadian Standard Association. All four repaired poles exceeded the CSA design transverse loading requirement for Class B poles. In addition, the bidirectional E-glass and carbon FRP repaired poles exceeded the benchmark performance of the undamaged Class C pole as a percentage of the required design load with the E-glass pole exhibiting the best performance.  相似文献   

5.
Numerical analyses are performed to predict the stress–strain behavior of square reinforced concrete columns strengthened by fiber-reinforced polymer (FRP) sheet confinement. The research focuses on the contribution of FRP sheets to the prevention of elastic buckling of longitudinal steel bars under compression, in cases of inadequate stirrup spacing. A new Drucker–Prager-type plasticity model is proposed for confined concrete and is used in constructed finite-element model. Suitable plasticity and elasticity models are used for steel reinforcing bars and fiber-reinforced polymers correspondingly. The finite-element analyses results are compared against published experimental results of columns subjected to axial compression, to validate the proposed finite-element model. Stress concentrations in concrete core and on FRP jacket are investigated considering circular or square sectioned, plain or reinforced concrete columns. Geometry of the section as well as the presence of steel bars and stirrups affect remarkably the variation and magnitude of stress on FRP as percentage of its tensile strength.  相似文献   

6.
The results of a comprehensive experimental program, aimed at providing a fundamental understanding of the behavior of shear-critical exterior reinforced concrete (RC) joints strengthened with fiber reinforced polymers (FRP) under simulated seismic load, are presented in this study. The role of various parameters on the effectiveness of FRP is examined through 2/3-scale testing of 18 exterior RC joints. Conclusions are drawn on the basis of certain load versus imposed displacement response characteristics, comprising the strength (maximum lateral load), the stiffness, and the cumulative energy dissipation capacity. The results demonstrate the important role of mechanical anchorages in limiting premature debonding, and they provide important information on the role of various parameters, including: area fraction of FRP; distribution of FRP between the beam and the column; column axial load; internal joint (steel) reinforcement; initial damage; carbon versus glass fibers; sheets versus strips; and effect of transverse beams.  相似文献   

7.
Steel-fiber-reinforced polymer (FRP) composite bars (SFCBs) are a novel reinforcement for concrete structures. Because of the FRP’s linear elastic characteristic and high ultimate strength, they can achieve a stable postyield stiffness even after the inner steel bar has yielded, which subsequently enables a performance-based seismic design to easily be implemented. In this study, lateral cyclic loading tests of concrete columns reinforced either by SFCBs or by ordinary steel bars were conducted with axial compression ratios of 0.12. The main variable parameters were the FRP type (basalt or carbon FRP) and the steel/FRP ratio of the SFCBs. The test results showed the following: (1)?compared with ordinary RC columns, SFCB-reinforced concrete columns had a stable postyield stiffness after the SFCB’s inner steel bar yielded; (2)?because of the postyield stiffness of the SFCB, the SFCB-reinforced concrete columns exhibited less column-base curvature demand than ordinary RC columns for a given column cap lateral deformation. Thus, reduced unloading residual deformation (i.e., higher postearthquake reparability) of SFCB columns could be achieved; (3)?the outer FRP type of SFCB had a direct influence on the performance of SFCB-reinforced concrete columns, and concrete columns reinforced with steel-basalt FRP (BFRP) composite bars exhibited better ductility (i.e., a longer effective length of postyield stiffness) and a smaller unloading residual deformation under the same unloading displacement when compared with steel-carbon FRP (CFRP) composite bar columns; (4)?the degradation of the unloading stiffness by an ordinary RC column based on the Takeda (TK) model was only suitable at a certain lateral displacement. In evaluating the reparability of important structures at the small plastic deformation stage, the TK model estimated a much smaller residual displacement, which is unsafe for important structures.  相似文献   

8.
The present work reports the test results of seven full-scale reinforced concrete slab-column edge connections strengthened against punching shear using different methods. In this study, three slabs contained openings in the vicinity of the column, and the other four were without openings. The dimensions of the slabs were 1,540×1,020×120 mm with square columns (250×250 mm). The openings in the specimens were square (150×150 mm) with the sides parallel to the sides of the column. The slabs were reinforced with an average reinforcement ratio of 0.75%. Except for the two reference slabs, two different strengthening techniques were considered. Technique I applies externally bonded fiber reinforced polymer (FRP) flexible sheets on the slab around the column in two schemes with one or two layers of FRP sheets glued to the tension face or both tension and compression faces of the slab. Both glass and carbon FRP sheets were considered. Technique II applies externally bonded FRP sheets using either the first or second scheme combined with installing steel bolts through holes across the slab thickness around the column. Based on the test results, it is concluded that the presence of FRP sheets and steel bolts substantially increased the punching capacity of the connections. Code design expressions were conservative in predicting the experimental results.  相似文献   

9.
Based on experimental data of tension lap splices confined with fiber reinforced polymer (FRP) sheets in normal and high strength concrete (HSC) specimens, a new FRP confinement parameter, Ktr,f, was recommended. It accounts for the increase in bond strength due to the presence of FRP sheets. In this paper, a correlation is presented between the confining effects of FRP flexible sheets, transverse reinforcement, and steel fibers to improve the bond capacity and ductility of the mode of failure of tension lap splices. The correlation is based on research programs conducted at the American University of Beirut in recent years using identical specimens except for the confinement method used: FRP sheets, transverse steel stirrups, or steel fibers. Other variables included the amount of confinement provided and concrete strength. Analysis of test results indicated that an equivalent improvement in bond strength of tension lap splices in normal and high strength concrete specimens is provided by an amount of FRP sheets corresponding to a Ktr,f value of 2.5, or an amount of transverse reinforcement corresponding to Ktr of 1.0db. For HSC specimens, an amount of steel fibers corresponding to a volume fraction of 1% would provide an equivalent improvement in bond strength.  相似文献   

10.
To assess the viability of the external confinement of normal-strength concrete beam–column joints with carbon fiber-reinforced polymer (CFRP) sheets in increasing the bond strength of hooked bars anchored in the joints, 12 hooked bar specimens were tested. The variables were beam tensile bar size, anchorage length, mode of confinement of the beam hooked bars in the beam–column joint (whether the hooked bars were anchored within or outside the column reinforcement cage, denoted as “confined specimens” or “unconfined specimens”), and presence or absence of FRP wraps. The specimen simulated the rigid connection of a cantilever beam to a column. The tensile beam reinforcement consisted of two bars anchored in the base column using hooked-bar anchorages. Test results indicated that FRP sheets were effective in increasing the anchorage capacity and the ductility of the load–deflection history for both unconfined and confined specimens. However, FRP sheets had a more significant influence on unconfined specimens than companion confined specimens. As compared with unconfined specimens without FRP wrapping, unconfined FRP specimens had an average of a 23% increase in bond strength, confined non-FRP specimens had an average 30% increase in bond strength, and confined FRP specimens had an increase of 54%.  相似文献   

11.
This paper presents the results of an experimental and analytical study of the fatigue performance of corroded reinforced concrete (RC) beams repaired with fiber-reinforced polymer (FRP) sheets. Ten RC beam specimens (152×254×3,200?mm) were constructed. One specimen was neither strengthened nor corroded to serve as a reference; three specimens were corroded and not repaired; another three specimens were corroded and repaired with U-shaped glass FRP sheets that wrapped the cross section of the specimen; and the remaining three specimens were corroded and repaired with U-shaped glass FRP sheets for wrapping and carbon-fiber-reinforced polymer (CFRP) sheets for flexural strengthening. The FRP sheets were applied after the main reinforcing bars were corroded to an average mass loss of 5.5%. Following FRP repair, some specimens were tested immediately to failure, while the other repaired specimens were subjected to further corrosion before being tested to failure to investigate their postrepair (long-term) performance. Reinforcement steel pitting due to corrosion reduced the fatigue life significantly. The FRP wrapping had no significant effect on the fatigue performance, while using CFRP sheets for flexural strengthening enhanced the fatigue performance significantly. The fatigue results were compared to smooth specimen fatigue data to estimate an equivalent fatigue notch factor for the main reinforcing bars of the tested specimens.  相似文献   

12.
A strengthening technique, combining carbon fiber-reinforced polymer (CFRP) laminates and strips of wet layup CFRP sheet, is used to increase both the flexural and the energy dissipation capacities of reinforced concrete (RC) columns of square cross section of low to moderate concrete strength class, subjected to constant axial compressive load and increasing lateral cyclic loading. The laminates were applied according to the near surface mounted technique to increase the flexural resistance of the columns, while the strips of CFRP sheet were installed according to the externally bonded reinforcement technique to enhance the concrete confinement, particularly in the plastic hinge zone where they also offer resistance to the buckling and debonding of the laminates and longitudinal steel bars. The performance of this strengthening technique is assessed in undamaged RC columns and in columns that were subjected to intense damage. The influence of the concrete strength and percentage of longitudinal steel bars on the strengthening effectiveness is assessed. In the groups of RC columns of 8 MPa concrete compressive strength, this technique provided an increase of about 67% and 46% in terms of column’s load carrying capacity, when applied to undamaged and damaged columns, respectively. In terms of energy dissipation capacity, the increase ranged from 40%–87% in the undamaged columns, while a significant increase of about 39% was only observed in one of the damaged columns. In the column of moderate concrete compressive strength (29 MPa), the technique was even much more effective, since, when compared to the maximum load and energy dissipation capacity of the corresponding strengthened column of 8 MPa of average compressive strength, it provided an increase of 39% and 109%, respectively, showing its appropriateness for RC columns of buildings requiring upgrading against seismic events.  相似文献   

13.
Increasing interest in the use of fiber-reinforced polymer (FRP) reinforcement for reinforced concrete structures has made it clear that insufficient information about the shear performance of such members is currently available to practicing engineers. This paper summarizes the results of 11 large shear tests of reinforced concrete beams with glass FRP (GFRP) longitudinal reinforcement and with or without GFRP stirrups. Test variables were the member depth, the member flexural reinforcement ratio, and the amount of shear reinforcement provided. Results showed that the equations of the Canadian CSA shear provisions provide conservative estimates of the shear strength of FRP-reinforced members. Recommendations are given along with a worked example on how to apply these provisions including to members with FRP stirrups. It was found that members with multiple layers of longitudinal bars appear to perform better than those with a single layer of longitudinal reinforcing bars. Overall, it was concluded that the fundamental shear behavior of FRP-reinforced beams is similar to that of steel-reinforced beams despite the brittle nature of the reinforcement.  相似文献   

14.
In this paper the failure of a three layer system comprising a concrete column, an intermediate epoxy layer, and fiber-reinforced polymer (FRP) confinement is investigated. We perform a series of numerical experiments to investigate how the failure loads and ultimate strains of axially loaded plain cement concrete (PCC) and reinforced cement concrete (RCC) columns change with the type of the bond between concrete and epoxy and between epoxy and FRP. Three types of interfacial behavior are considered: rigid, cohesive compliant, and unbonded contact. An idealized spring model for the resultant confinement stiffness is used to explain the effect the nature of the bond has on the results. It is found that the type of bond has a significant effect on the ultimate strength of PCC columns. The results also indicate that the presence of longitudinal and hoop steel reinforcement allows use of comparatively less stiff FRP sheets as confinement material for RCC columns.  相似文献   

15.
The effectiveness of fiber-reinforced polymer (FRP) and textile-reinforced mortar (TRM) jackets was investigated experimentally and analytically in this study to confine old-type reinforced concrete (RC) columns with limited capacity because of bond failure at lap-splice regions. The local bond strength between lap-spliced bars and concrete was measured experimentally along the lap-splice region of six full-scale RC columns subjected to cyclic uniaxial flexure under constant axial load. The bond strength of the two column specimens tested without retrofitting was found to be in good agreement with the predictions given by two existing bond models. These models were modified to account for the contribution of composite material jacketing to the bond resistance between lap-spliced bars and concrete. The effectiveness of FRP and TRM jackets against splitting at lap splices was quantified as a function of jacket properties and geometry as well as in terms of the jacket effective strain, which was found to depend on the ratio of lap-splice length to bar diameter. Consequently, simple equations for calculating the bond strength of lap splices in members confined with composite materials (FRP or TRM) are proposed.  相似文献   

16.
This research studies the interaction of concrete, steel stirrups, and external fiber reinforced polymer (FRP) sheets in carrying shear loads in reinforced concrete beams. A total of eight tests were conducted on four laboratory-controlled concrete T-beams. The beams were subjected to a four-point loading. Each end of each beam was tested separately. Three types of FRP, uniaxial glass fiber, uniaxial carbon fiber, and triaxial glass fiber, were applied externally to strengthen the web of the T-beams, while some ends were left without FRP. The test results show that FRP reinforcement increases the maximum shear strengths between 15.4 and 42.2% over beams with no FRP. The magnitude of the increased shear capacity is dependent not only on the type of FRP but also on the amount of internal shear reinforcement. The triaxial glass fiber reinforced beam exhibited more ductile failure than the other FRP reinforced beams. This paper also presents a test model that is based on a rational mechanism and can predict the experimental results with excellent accuracy.  相似文献   

17.
To prevent the casualties that can result from the collapse of earthquake-damaged structures, it is important that structures be rehabilitated as soon as possible. This paper proposes a rapid rehabilitation scheme for repairing moderately damaged reinforced concrete (RC) beam-wide column joints. Four nonseismically detailed interior beam-wide column joints were used as control specimens. All four subassemblages were subjected to similar cyclic lateral displacement to provide the equivalent of severe earthquake damage. The damaged control specimens were then repaired by filling their cracks with epoxy and externally bonding them with carbon-fiber-reinforced polymer (CFRP) sheets and glass-fiber-reinforced polymer (GFRP) sheets. These repaired specimens were then retested and their performance compared with that of the control specimens. This paper demonstrates that the repair of damaged RC beam-wide column joints by using FRP can restore the performance of damaged RC joints with relative ease, suggesting that the repair of beam-column joints is a cost-effective alternative to complete demolition and replacement  相似文献   

18.
Fiber reinforced polymers (FRPs) have a thermal expansion in the transverse direction much higher than in the longitudinal direction and also higher than the thermal expansion of hardened concrete. The difference between the transverse coefficient of thermal expansion of FRP bars and concrete may cause splitting cracks within the concrete under temperature increase and, ultimately, failure of the concrete cover if the confining action of concrete is insufficient. This paper presents the results of an experimental investigation to analyze the effect of the ratio of concrete cover thickness to FRP bar diameter (c/db) on the strain distributions in concrete and FRP bars, using concrete cylindrical specimens reinforced with a glass FRP bar and subjected to thermal loading from ?30?to?+80°C. The experimental results show that the transverse coefficient of thermal expansion of the glass FRP bars tested in this study is found to be equal to 33 (×10?6?mm/mm/°C), on average and the ratio between the transverse and longitudinal coefficients of thermal expansion of these FRP bars is equal to 4. Also, the cracks induced by high temperature start to develop on the surface of concrete cylinders at a temperature varying between +50 and +60°C for specimens having a ratio of concrete cover thickness to bar diameter c/db less than or equal to 1.5. A ratio of concrete cover thickness to glass fiber reinforced polymers (GFRP) bar diameter c/db greater than or equal to 2.0 is sufficient to avoid cracking of concrete under high temperature up to +80°C. The analytical model, presented in this paper, is in good agreement with the experimental results, particularly for negative temperature variations.  相似文献   

19.
Hollow core reinforced concrete columns are generally preferred in use to decrease the cost and weight/stiffnesss ratio of members, such as bridge columns and piles. With a simplified stress state assumption, strengthening a hollow core reinforced concrete column with fiber-reinforced polymer (FRP) wrapping provides a biaxial confinement to the concrete, which leads to a need of defining the effect of FRP wrapping on the strength and ductility of the hollow core reinforced concrete columns. In this study, two groups of four hollow core reinforced concrete columns (205?mm outer diameter, 56?mm hollow core diameter, and 925?mm height) were tested under concentric, eccentric (25 and 50?mm eccentricity) and bending loads to observe the effect of carbon FRP (CFRP) wrapping. All the columns had internal steel reinforcement. Half of the columns had three layers of circumferential CFRP wrapping, whereas the other half had no external confinement. Axial load-bending moment (P–M) diagrams of each group were drawn using the obtained experimental results for both groups. It was observed that, CFRP wrapped columns had higher load and moment carrying capacities than the other group. An analytical model is proposed for drawing the P–M diagram of CFRP wrapped hollow core reinforced concrete columns.  相似文献   

20.
This paper presents the peeling behavior and spalling resistant effect of bidirectional fiber reinforced polymer (FRP) sheets externally bonded to concrete surfaces. Experimental investigations are carried out through a series of newly designed punching-peeling tests. A wide range of variables, such as FRP sheet layers and fiber direction, plate constraint, concrete strength, adhesives, bond length of FRP sheets, diameter of indenter, and types of fibers, are considered in the experimental investigation. Theoretical study is also conducted for the specimens. Interfacial fracture energy is calculated analytically using a membrane-peeling method. It is realized that only two material parameters, i.e., the interfacial fracture energy of the FRP-concrete interface and the tensile stiffness of FRP sheets, are necessary to represent the interfacial spalling resistant behavior. Finally, the theoretical results are validated by comparing with experimental results. Comparison of theoretical to experimental results shows that the proposed theoretical model is satisfactory in reasonably and accurately predicting the peeling behavior and spalling resistant capacity of bidirectional FRP sheets bonded to concrete surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号