首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compacted soilbentonite mixtures are finding wide application as buffer material for waste repositories for their favorable self-sealing qualities. The swelling properties of such materials which serve as a measure of their self-sealing capabilities and, thus, the efficiency of the repository in sealing off their contents from the environment are closely related to the chemistry of the leachate that emanate from the wastes. For this reason, the swelling parameters (namely swelling potential and pressure) of compacted lateritic soil–bentonite mixtures under consideration for use as barrier in municipal waste landfill were evaluated. Series of swelling potential and pressure tests were performed using variable content (0–10 %) of bentonite at predetermined optimum moisture content. Soil mixtures were compacted with British Standard Heavy compactive effort and saturated with processed tap water as well as three leachate solutions of varying ionic strength that were generated in active open dump landfills. Experimental results showed that swelling potential based on the free swell together with the maximum swell pressures of compacted soil mixtures measured at equilibrium increased approximately linearly with increase in the amount of bentonite when inundated with processed tap water and the three leachate solutions. On the other hand, these swelling parameters decreased as the ionic strength of the leachate solutions measured by their electrical conductivity increased for the various soil mixtures. These results provide an insight into the swelling behavior and the possible degradation in the efficiency of the proposed lateritic soil–bentonite mixtures in relation to their use as buffer material in waste landfills.  相似文献   

2.
Chen  Yong-Gui  Cai  Ye-Qing  Pan  Kan  Ye  Wei-Min  Wang  Qiong 《Acta Geotechnica》2022,17(5):1879-1896
Acta Geotechnica - Compacted Gaomiaozi bentonite–sand mixtures are regarded as attractive buffer/backfill materials for nuclear waste deep geological disposal. When the mixture blocks are...  相似文献   

3.
Bricks made of compacted sand–bentonite mixture are considered as a possible engineered barrier to isolate high-level radioactive waste at great depth. This work is aimed at investigating some specific effects related to the presence of discontinuities at the contact between the bricks and the excavation wall. In order to do this, an experimental device was developed in the laboratory. The model is made up of a specially designed infiltration cylinder which allows the precise definition of a planar discontinuity between the compacted specimen (a sand–bentonite mixture made up of sand and Kunigel clay from Japan) and a metal wall. During hydration and subsequent specimen swelling, the planar wall is filled, resulting in a healing process. Three total pressure gauges placed along the wall allow a detailed observation of the increase in total stress against the wall. After different periods of swelling, the maximum resistance of the specimen–wall interface to pressure was tested by imposing a pressure increase through a porous stone placed at one end of the cylinder. It was found that the maximum pressure supported by the interface is a function of the initial thickness of the discontinuity and the initial density of the specimen. It was also found that the maximum sustainable pressure depends linearly on the elapsed time. These results are of interest for optimizing water infiltration procedures in either mock-up tests or real disposal systems. If the maximum sustainable pressure at the interface is known, it is possible either to ensure homogeneous hydration of a mass of bricks by respecting the maximum injection pressure limit or to accelerate hydration by forcing water paths along the discontinuities.  相似文献   

4.
Wang  Dong-Wei  Zhu  Cheng  Tang  Chao-Sheng  Li  Sheng-Jie  Cheng  Qing  Pan  Xiao-Hua  Shi  Bin 《Acta Geotechnica》2021,16(9):2759-2773

Deep geological repository is a favorable choice for the long-term disposal of nuclear wastes. Bentonite–sand mixtures have been proposed as the potential engineered barrier materials because of their suitable swelling properties and good ability to seal under hydrated repository conditions. To investigate the effects of sand grain size on the engineering performance of bentonite–sand mixtures, we prepare five types of bentonite–sand mixtures by mixing bentonite with sand of varying particle size ranges (0.075–0.25 mm, 0.25–0.5 mm, 0.5–1 mm, 1–2 mm and 2–5 mm, respectively). We carry out sequential oedometer tests under different simulated repository conditions, including constant vertical stress (CVS), constant stiffness (CS) and constant volume (CV) conditions. The microstructural heterogeneity and anisotropy of these soil mixtures are characterized through the quantitative analysis of micro-CT scanning results. Experimental results reveal that both sand grain size and boundary condition significantly influence the swelling of soil mixtures. Under three conditions, the temporal evolutions of swelling stress and strain follow similar trends that they increase faster at the beginning and gradually stabilize afterward. Comparing the ultimate values, swelling strains follow CVS?>?CS?>?CV, while swelling stresses follow CV?>?CS?>?CVS. Under CS boundary conditions, as the stiffness coefficient increases, the swelling pressure increases and the swelling strain decreases. CT results further indicate that mixtures with larger sand inclusions are more structurally heterogeneous and anisotropic, resulting in increased inter-particle friction and collision and a higher energy dissipation during the swelling process. Moreover, the non-uniform distribution of bentonite in local zones would be intensified, which plays an important role in compromising swelling behavior. Therefore, soil samples mixed with larger sand particles present a smaller swelling stress and strain values. This study may guide the choice of engineered barrier materials toward an improved design and assessment of geological repository facilities.

  相似文献   

5.
In the present study, influence of wetting–drying cycles on swelling pressures of sand–bentonite mixtures used in the construction of sanitary landfills to have an impermeable liner was investigated before and after lime treatment of the mixtures. Swelling pressure tests were conducted to see if the swelling pressures were affected by wetting–drying cycles. First series of specimens were prepared as a mixture of sand and bentonite only. In the first series of specimens, sand was mixed with bentonite in various proportions with their optimum water contents and compacted by using standard proctor energy. In the second series of the specimens, lime in various proportions was added to the mixtures of sand–bentonite. Then, the sand–bentonite mixtures stabilized by lime were compacted with the standard proctor energy at their optimum moisture contents. Five wetting–drying cycles were performed on each specimen and values of swelling pressures were measured at the end of each cycle. Results of swelling pressure tests indicated that the swelling pressure is decreased when lime is added to the mixtures. In addition, decrements were observed on swelling pressures by wetting–drying cycles. The results of the experiments of this investigation showed that the beneficial effect of lime stabilization to control the swelling pressures was partly lost by the wetting–drying cycles. However, the test results indicated that the swelling pressures of the specimens made of sand–bentonite mixtures stabilized by lime were lower than the swelling pressures of the specimens made of only sand–bentonite mixtures.  相似文献   

6.
7.
In this study, an investigation was performed to determine if lime-stabilized sand–bentonite mixtures are appropriate for the construction of sanitary landfills liners. For this aim, the hydraulic conductivity tests were conducted in the laboratory on sand–bentonite mixtures and lime-stabilized sand–bentonite mixtures to evaluate the effect of wetting–drying cycles. The hydraulic conductivity tests were performed to see if their hydraulic conductivities are affected by wetting–drying cycles. First series of specimens have been prepared as a mixture of sand and bentonite only. In the first series of specimens, sand was mixed with bentonite in proportions of 20, 30, 40, and 50 %. In the second series of the specimens, lime in proportions of 1, 2 and 3 % by weight was added to the mixtures of sand–bentonite in proportions of 20, 30, 40, and 50 %. From the results of the tests, it was observed that while optimum water content increased, maximum dry density decreased with addition of lime to the sand–bentonite mixtures. Generally, the hydraulic conductivity increased with the addition of lime to the mixtures but at low percentages of lime (1–2 %), however, slight decreases in k were recorded. It was also observed that the wetting–drying cycles on the permeability test indicate cure effect on specimens with addition of lime which resulted in decreased the hydraulic conductivity.  相似文献   

8.
This paper investigates the fundamental characteristics of shear strength and deformation of crushed oyster shell–sand mixtures to stimulate recycling of waste oyster shells. Standard penetration tests (SPT) and large-scale direct-shear tests were carried out with different kinds of dry unit weight and mixing rate of oyster shell–sand mixture. Correlations between N-value, dry unit weight, and friction angle of mixtures were observed from the results of experimental tests, making it possible to estimate the in situ strength from SPT, and the coefficient of volume compressibility from the confined direct-shear compression test. These results also make it possible to compute the settlement of oyster shell–sand mixture when used in soft ground improvement.  相似文献   

9.
Thermal conductivity is an important parameter to consider when designing clay-based barriers for use in deep geological repositories (DGR). In the DGR environment, the infiltration of local saline groundwater can potentially change the pore fluid chemistry of a barrier over its lifetime. This change in chemistry is known to alter the thermal properties of the barrier materials. In order to examine the impact of pore fluid salinity on thermal conductivity, experiments were conducted under both distilled water and saline pore fluid conditions. The material mixtures were prepared at two different dry densities using two different salt types. Furthermore, five different thermal conductivity prediction models were selected and evaluated on their performance with respect to the experimental outcomes. In general, these results indicated that an increase in the constituent pore fluid’s salt concentration leads to a decrease in the thermal conductivity of the material. Additionally, the thermal conductivity values of the materials prepared at a high dry density were greater than of those compacted at a low dry density.  相似文献   

10.
The effect of non-plastic fines (silt) on the undrained monotonic response of saturated and isotropically consolidated sand specimens prepared to various measures of their density was studied in detail through various approaches namely gross void ratio approach, relative density approach, sand skeleton void ratio approach, and interfine void ratio approach. Specimens of 50 mm in diameter and 100 mm in height were tested at a rate of loading of 0.6 mm/min for this purpose. The limiting silt content and the relative density of a specimen were found to influence the undrained monotonic response of sand–silt mixtures to a great extent. Undrained monotonic response was observed to be independent of silt content at very high relative densities; however the presence of fines significantly influenced this response of loose to medium dense specimens. Individual and combined analyses of undrained monotonic peak strengths which are closely related to the liquefaction related problems have been done in this paper to assess the variation patterns.  相似文献   

11.
12.
Chang  Ching S.  Deng  Yibing 《Acta Geotechnica》2022,17(7):2675-2696

The energy equation is an expression of the first law of thermodynamics or the law of conservation of energy. According to the first law of thermodynamics, the externally applied work to a system is equal to the sum of dissipation energy and Helmholtz free energy of the system. However, most of the currently available stress–dilatancy relationships are based on the energy equation of Taylor-Cam Clay type, which hypothesizes that the applied plastic work is equal solely to the frictional dissipation energy. The Helmholtz free energy has been completely neglected. Recently, observed from acoustic experiments, it has been recognized that Helmholtz free energy can be caused by deformation mechanisms other than friction between particles. Thus, it is necessary to include additional terms in the energy equation in order to correctly model the stress-dilatancy behavior. This paper addresses the issue regarding the balance of this energy equation. Analyses of experimental results are presented. Specific forms of the frictional energy and Helmholtz free energy are proposed. The proposed energy equation is verified with the experimental data obtained from Silica sand, Ottawa sand, and Nevada sand.

  相似文献   

13.
14.
Wei  Xiao  Liu  Huanzi  Ku  Taeseo 《Acta Geotechnica》2020,15(10):2905-2923
Acta Geotechnica - Cement stabilization is a useful and widely adopted method to improve the engineering properties of soils. However, characterization of the unconfined compressive strength, a...  相似文献   

15.
Kim  Sang Yeob  Lee  Jong-Sub 《Acta Geotechnica》2020,15(4):947-961
Acta Geotechnica - Previously, in situ tests have been conducted in cold regions since infrastructures such as pipelines have been actively built on frozen ground. However, the engineering...  相似文献   

16.
Owing to its low hydraulic conductivity, soil and bentonite mixture is applied as a liner material. However, the experimental determination of hydraulic conductivity, which is controlled by various physical, chemical and mineralogical factors, requires an expensive and time-consuming setup. In the present work, multigene symbolic, genetic programming was used to model functional relationships for hydraulic conductivity. The developed model was able to generalize highly nonlinear variations in data as well as predict system behavior from experimental observations. It was found that the predictions obtained from developed model agree well with experimental observations.  相似文献   

17.
A compression model for sand–silt mixtures is needed in geotechnical engineering, for example in the analysis and prediction of deformation of levees and embankments due to internal erosion. In this paper, we introduce a novel concept of dividing the voids of a granular material into two hypothetical fractions: active and inactive voids. The active voids are kinematically available to the compression process. The inactive voids are kinematically unavailable to the compression process. The volume of active voids is dependent on the initial density and effective stress level. The volume of inactive voids is dependent on the amount of fines in the mixture. The current paper considers 1-D and isotropic compression behavior of sand–silt mixtures at stress levels lower than 2 MPa, so no substantial particle breakage is expected to occur. To successfully predict the void ratio for a sand–silt mixture during compression loading, we need (1) a mathematical expression for the evolution of the active void ratio during compression and (2) a relationship between the inactive void ratio and fines content of the mixture. For sand–silt mixtures with any amount of fines, the proposed model requires five material parameters, which are determined from two compression tests, and four minimum void ratio tests on sand–silt mixtures with different fines content. The performance of the proposed model is verified for six different types of sand–silt mixture with various fines contents, by comparing the predicted void ratios with the measured data from the experiments. The comparisons show a good agreement between the predictions and the measured data and prove the suitability of the proposed model for the prediction of compressibility of sand–silt mixtures with any amount of fines.  相似文献   

18.
State parameter defined using void ratio, e, and the steady-state line has been shown to be effective in predicting the undrained behaviour of sand. However, steady-state line for sand with fines is dependent on fines content. To overcome this problem, the concept of equivalent granular void ratio, e*, has been well investigated. However, the conversion from e to e* has been essentially a back-analysis process. A methodology for converting e to e* without the need of a back-analysis process was first presented. The concept of equivalent granular state parameter, ψ*, defined in terms of e*, and equivalent granular steady-state line was then developed. An extensive experimental study was conducted to investigate whether ψ* can capture the effects of fines content, and thus can be used to correlate undrained behaviour of sand–fines mixtures without the need of separately considering the effects of fines content. This study suggested that the effective stress path and deviatoric stress–strain responses in undrained shearing can be correlated with the ψ* value at the start of undrained shearing irrespective of fines content.  相似文献   

19.
A new constitutive model for fibre-reinforced cohesive soil is proposed. The model combines a Cam-Clay like bounding surface model with an elastic–plastic one-dimensional fibrous element model. A “smearing procedure”, which can consider any spatial distribution of fibre orientation, is employed to transform discrete tensile forces developed in the fibres into stresses for the composite material. The fibre stress contribution is bounded by both degradation of soil–fibre bonding due to pull-out mechanism and tensile strength of the fibres. Eventual occurrence of fibre breakage is also considered. The model performances are analysed for both consolidation and shearing loading modes, and qualitative comparison is performed with experimental data available in the literature. For consolidation loading, tensile stresses are not developed in the fibres and thus the fibre effect is rather limited. For drained shear loading, addition of fibres can result in a consistent shear strength increase. The beneficial effect of fibres seems to be controlled by two parameters: the fibre tensile stiffness and the fibre/soil strain ratio that accounts for any possible slippage or shear deformation at the fibre/soil matrix interface. For undrained shear loading, the strengthening effect of the fibres appears to be counteracted by the increase in pore water pressure, induced by the additional confining contribution of the fibres. In agreement with published experimental data, the model suggests also that the moisture content is a key factor governing fibre effectiveness for undrained shearing. Finally, analysis of the model predicted critical states for fibre-reinforced cohesive soil is provided.  相似文献   

20.
The hydraulic conductivity represents an important indicator parameter in the generation and redistribution of excess pore pressure of sand–silt mixture soil deposits during earthquakes. This paper aims to determine the relationship between the undrained shear strength (liquefaction resistance) and the saturated hydraulic conductivity of the sand–silt mixtures and how much they are affected by the percentage of low plastic fines (finer than 0.074 mm) and void ratio of the soil. The results of flexible wall permeameter and undrained monotonic triaxial tests carried out on samples reconstituted from Chlef river sand with 0, 10, 20, 30, 40, and 50 % non-plastic silt at an effective confining pressure of 100 kPa and two initial relative densities (D r = 20, 91 %) are presented and discussed. It was found that the undrained shear strength (liquefaction resistance) can be correlated to the fines content, intergranular void ratio and saturated hydraulic conductivity. The results obtained from this study reveal that the saturated hydraulic conductivity (k sat) of the sand mixed with 50 % low plastic fines can be, in average, four orders of magnitude smaller than that of the clean sand. The results show also that the global void ratio could not be used as a pertinent parameter to explain the undrained shear strength and saturated hydraulic conductivity response of the sand–silt mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号