首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly-aligned flake graphite (FG) reinforced Cu matrix composites with high thermal conductivity and adaptive coefficient of thermal expansion were successfully prepared via the collaborative process of tape-casting and hot-pressing sintering. To overcome the problem of fragile interface, Zr-Cu alloy powder was introduced instead of pure Zr powder to enhance the interfacial strength, ascribed to the physical-chemical bonding at the Cu-FG interface. The results indicate that the synthetic ZrC as interfacial phase affects the properties of FG/Cu composites. The thermal conductivity reaches the maximum value of 608.7 W/m∙K (52% higher than pure Cu) with 0.5 wt % Zr. Surprisingly, the negative coefficient of thermal expansion (CTE) in the Z direction is acquired from −7.61 × 10−6 to −1.1 × 10−6/K with 0 to 2 wt % Zr due to the physical mechanism of strain-engineering of the thermal expansion. Moreover, the CTE in X-Y plane with Zr addition is 8~10 × 10−6/K, meeting the requirements of semiconductor materials. Furthermore, the bending strength of the FG/Cu-2 wt % Zr composite is 42% higher than the FG/Cu composite. Combining excellent thermal conductivity with ultralow thermal expansion make the FG/Cu-Zr composites be a highly promising candidate in the electronic packaging field.  相似文献   

2.
Selective laser sintering (SLS) is being developed for dental applications. This study aimed to investigate the properties of Ti-6Al-4V and pure titanium specimens fabricated using the SLS process and compare them with casting specimens. Besides, the effect of the building direction on the properties of the SLS specimens was also investigated. Specimens were prepared by SLS using Ti-6Al-4V powder or pure titanium powder. Casting specimens were also prepared using Ti-6Al-4V alloys and pure titanium. The mechanical properties (tensile strength and elongation), physical properties (surface roughness, contact angle, and Vickers hardness); corrosion resistors (color difference and corrosion), and surface properties (chemical composition and surface observation) were examined. Both Ti-6Al-4V and pure titanium specimens produced using the SLS process had comparable or superior properties compared with casting specimens. In comparing the building directions, specimens fabricated horizontally to the printing platform showed the greatest tensile strength, and the surface roughness scanned in the horizontal direction to the platform showed the smallest. However, there was no significant effect on other properties. Thus, the SLS process with Ti-6Al-4V powder and pure titanium powder has great performance for the fabrication of dental prosthesis, and there is a possibility for it to take the place of conventional methods.  相似文献   

3.
In this study, magnesium composites with nano-size boron nitride (BN) particulates of varying contents were synthesized using the powder metallurgy (PM) technique incorporating microwave-assisted two-directional sintering followed by hot extrusion. The effect of nano-BN addition on the microstructural and the mechanical behavior of the developed Mg/BN composites were studied in comparison with pure Mg using the structure-property correlation. Microstructural characterization revealed uniform distribution of nano-BN particulates and marginal grain refinement. The coefficient of thermal expansion (CTE) value of the magnesium matrix was improved with the addition of nano-sized BN particulates. The results of XRD studies indicate basal texture weakening with an increase in nano-BN addition. The composites showed improved mechanical properties measured under micro-indentation, tension and compression loading. While the tensile yield strength improvement was marginal, a significant increase in compressive yield strength was observed. This resulted in the reduction of tension-compression yield asymmetry and can be attributed to the weakening of the strong basal texture.  相似文献   

4.
Background: The purpose was to compare the fracture resistance and the mode of failure of different contemporary restorative materials to restore implant supported, cement-retained mandibular molars. Methods: Two 5 × 10 mm titanium dental implants were mounted in resin blocks and prefabricated titanium and zirconia abutments were connected to each implant. Each implant received forty crowns resembling mandibular first molars. The specimens were divided into four groups (n = 10/group) for each abutment according to the type of material; Group A: porcelain fused to metal crowns; Group B: monolithic zirconia crowns; Group C: zirconia coping with ceramic veneer; Group D: all ceramic lithium disilicate crowns. Specimens were cemented to the abutments, mounted into a universal testing machine, and vertical static load was applied at a speed of 1 mm/min. The test stopped at signs of visual/audible fracture/chipping. Fracture resistance values were analyzed using ANOVA and Tukey’s tests (α ≤ 0.05). The modes of failure were visually observed. Results: A statistically significant difference (p < 0.001) of the fracture resistance values among tested groups was found. The group that showed the highest fracture resistance was Group A for both the titanium and the zirconia abutments (3.029 + 0.248 and 2.59 ± 0.39, respectively) while Group D for both abutments (1.134 + 0.289 and 1.68 ± 0.13) exhibited the least resistance. Conclusions: Fracture resistance and fracture mode varied depending on type of restorative material. For both titanium and zirconia abutments, porcelain fused to metal showed the highest fracture resistance values followed by monolithic zirconia.  相似文献   

5.
A series of Fe2O3@LSF (La0.8Sr0.2FeO3−δ perovskite) core-shell materials (CSM) was prepared by infiltration of LSF precursors gel containing various complexants and their mixtures to nanocrystalline aggregates of hematite followed by thermal treatment. The content of LSF phase and amount of carboxyl groups in complexant determine the percent coverage of iron oxide core with the LSF shell. The most conformal coating core-shell material was prepared with citric acid as the complexant, contained 60 wt% LSF with 98% core coverage. The morphology of the CSM was studied by HRTEM-EELS combined with SEM-FIB for particles cross-sections. The reactivity of surface oxygen species and their amounts were determined by H2-TPR, TGA-DTG, the oxidation state of surface oxygen ions by XPS. It was found that at complete core coverage with perovskite shell, the distribution of surface oxygen species according to redox reactivity in CSM resemble pure LSF, but its lattice oxygen storage capacity is 2–2.5 times higher. At partial coverage, the distribution of surface oxygen species according to redox reactivity resembles that in iron oxide.  相似文献   

6.
The aim of this study is to investigate the effect of non-thermal atmospheric pressure plasma (NTP) on retentive strength (RS) between the zirconia crown and the titanium implant abutment using self-adhesive resin cement. Surface free energy (SFE) was calculated on 24 cube-shaped zirconia blocks, and RS was measured on 120 zirconia crown-titanium abutment assemblies bonded with G-CEM LinkAce. The groups were categorized according to the zirconia surface treatment as follows: Control (no surface treatment), NTP, Si (Silane), NTP + Si, Pr (Z-Prime Plus), and NTP + Pr. Half of the RS test assemblies were aged by thermocycling for 5000 cycles at 5–55 °C. The SFE was calculated using the Owens-Wendt method, and the RS was measured using a universal testing machine at the maximum load until failure. One-way analysis of variance (ANOVA) with post-hoc Tukey honestly significant difference (HSD) was performed to evaluate the effect of surface treatments on the SFE and RS. Independent sample t-test was used to compare the RS according to thermocycling (p < 0.05). For the SFE analysis, the NTP group had a significantly higher SFE value than the Control group (p < 0.05). For the RS test, in non-thermocycling, the NTP group showed a significantly higher RS value than the Control group (p < 0.05). However, in thermocycling, there was no significant difference between the Control and NTP groups (p > 0.05). In non-thermocycling, comparing with the NTP + Si or NTP + Pr group, there was no significant difference from the Si or Pr group, respectively (p > 0.05). Conversely, in thermocycling, the NTP + Si and NTP + Pr group had significantly lower RS than the Si and Pr group, respectively (p < 0.05). These results suggest that NTP single treatment for the zirconia crown increases the initial RS but has little effect on the long-term RS. Applied with Silane or Z-Prime Plus, NTP pre-treatment has no positive effect on the RS.  相似文献   

7.
Background: The clinical use of zirconia implants has been shown to increase steadily due to their biological, aesthetic, and physical properties; therefore, this bibliometric study aimed to review the clinical research and co-authors in the field of zirconia dental implant rehabilitation. Methods: We searched Scopus and Web of Science databases using a comprehensive search strategy to 5 October 2020, and independently paired reviewers who screened studies, and collected data with inclusion criteria restricted to clinical research only (either prospective or retrospective). Data on article title, co-authors, number of citations received, journal details, publication year, country and institution involved, funding, study design, marginal bone loss, survival rate, failure, follow-up, and the author’s bibliometric data were collected and evaluated. Results: A total of 29 clinical studies were published between 2008 and 2020 as 41.4% were prospective cohort studies and 48.3% originated from Germany. Most of the included studies had been published in Clinical Oral Implant Research (n = 12), and the most productive institution was the Medical Center of University of Freiburg. The author with the largest number of clinical studies on zirconia implants was Kohal R.J. (n = 10), followed by Spies B.C. (n = 8). Conclusions: This study revealed that zirconia implants have been more prominent in the last ten years, which is a valuable option for oral rehabilitation with marginal bone loss and survival rate comparable to titanium dental implants.  相似文献   

8.
Ultraviolet (UV) light and non-thermal plasma (NTP) treatment are chairside methods that can efficiently improve the biological aging of implant material surfaces caused by customary storage. However, the behaviors of stem cells on these treated surfaces of the implant are still unclear. This study aimed to investigate the effects of UV light and NTP treated surfaces of titanium, zirconia and modified polyetheretherketone (PEEK, BioHPP) on the attachment and osteogenic potential of human dental pulp stem cells (DPSCs) in vitro. Machined disks were treated using UV light and argon or oxygen NTP for 12 min each. Untreated disks were set as controls. DPSCs were cultured from the wisdom teeth of adults that gave informed consent. After 24 h of incubation, the attachment and viability of cells on surfaces were assessed. Cells were further osteogenically induced, alkaline phosphatase (ALP) activity was detected via a p-Nitrophenyl phosphate assay (day 14 and 21) and mineralization degree was measured using a Calcium Assay kit (day 21). UV light and NTP treated titanium, zirconia and BioHPP surfaces improved the early attachment and viability of DPSCs. ALP activity and mineralization degree of osteoinductive DPSCs were significantly increased on UV light and NTP treated surfaces of titanium, zirconia and also oxygen plasma treated Bio-HPP (p < 0.05). In conclusion, UV light and NTP treatments may improve the attachment of DPSCs on titanium, zirconia and BioHPP surfaces. Osteogenic differentiation of DPSCs can be enhanced on UV light and NTP treated surfaces of titanium and zirconia, as well as on oxygen plasma treated Bio-HPP.  相似文献   

9.
Microstructures and corrosion properties of pure titanium were characterized when iron was used as a grain refiner. The added Fe element acted as a strong grain refiner for pure titanium by forming β Ti phase at grain boundaries, and 0.15 wt% Fe was revealed to be a sufficient amount to make the grain size of pure titanium below 20 μm, which was the requirement for the desired titanium cathode. However, corrosion resistance was decreased with the Fe amount added. From the open circuit potential (OCP) results, it was obvious that the TiO2 stability against the reducing acid environment was deteriorated with the Fe amount, which seemed to be the main reason for the decreased corrosion resistance. Electrochemical impedance spectroscopy (EIS) results showed that both the decrease in the compact oxide film’s resistance (Rb) and the appearance of the outer porous film occurred as a result of the dissolution of the TiO2 layer, whose phenomena became more apparent as more Fe was added.  相似文献   

10.
This study concerned the effect of heat treatment during setting on the physical properties of four resin-based provisional restorative materials: Duralay (polymethyl methacrylate), Trim II (polyethyl methacrylate), Luxatemp (bis-acrylic composite), and Protemp 4 (bis-acrylic composite). Specimens were prepared at 23, 37, or 60 °C for evaluation of flexural strength, surface roughness, color change and marginal discrepancy. Flexural strength was determined by a three-point bending test. Surface profile was studied using atomic force microscopy. Color change was evaluated by comparing the color of the materials before and after placement in coffee. A travelling microscope helped prepare standardized crowns for assessment of marginal discrepancy. Flexural strength of all tested materials cured at 23 °C or 37 °C did not significantly change. The surface roughness and marginal discrepancy of the materials increased at 60 °C curing temperature. Marginal discrepancies, color stability, and other physical properties of materials cured at 23 °C or 37 °C did not significantly change. Flexural strength of certain provisional materials cured at 60 °C increased, but there was also an increase in surface roughness and marginal discrepancy.  相似文献   

11.
Dental implants with tapered conical connections are often combined with zirconia abutments for esthetics; however, the effect of the titanium base on the implant components remains unclear. This study evaluated the effects of a titanium base on the fracture resistance of zirconia abutments and damage to the tapered conical connection implants. Zirconia (Z) and titanium base zirconia (ZT) abutments were fastened to Nobel Biocare (NB) implants and Straumann (ST) implants and subjected to static load testing according to ISO 14801:2016. The experiments were performed with 3 mm of the platform exposed (P3) and no platform exposed (P0). The fracture loads were statistically greater in the titanium base abutments than the zirconia abutments for the NB and ST specimens in the P0 condition. In the P3 condition of the ST specimens, the deformation volume of the ZT group was significantly greater than the Z group. The titanium base increased the fracture resistance of the zirconia abutments. Additionally, the titanium base caused more deformation in the P3 condition. The implant joint design may also affect the amount of damage to the implants when under a load. The mechanical properties of the abutment should be considered when selecting a clinical design.  相似文献   

12.
Pin Lv  Xin Yang  Ting Jiang 《Materials》2015,8(12):8087-8096
This study was designed to evaluate the effect of hot-etching surface treatment on the shear bond strength between zirconia ceramics and two commercial resin cements. Ceramic cylinders (120 units; length: 2.5 mm; diameter: 4.7 mm) were randomly divided into 12 groups (n = 10) according to different surface treatments (blank control; airborne-particle-abrasion; hot-etching) and different resin cements (Panavia F2.0; Superbond C and B) and whether or not a thermal cycling fatigue test (5°–55° for 5000 cycles) was performed. Flat enamel surfaces, mounted in acrylic resin, were bonded to the zirconia discs (diameter: 4.7 mm). All specimens were subjected to shear bond strength testing using a universal testing machine with a crosshead speed of 1 mm/min. All data were statistically analyzed using one-way analysis of variance and multiple-comparison least significant difference tests (α = 0.05). Hot-etching treatment produced higher bond strengths than the other treatment with both resin cements. The shear bond strength of all groups significantly decreased after the thermal cycling test; except for the hot-etching group that was cemented with Panavia F2.0 (p < 0.05). Surface treatment of zirconia with hot-etching solution enhanced the surface roughness and bond strength between the zirconia and the resin cement.  相似文献   

13.
The aim of the present study was to evaluate the in vivo bone response to an additively manufactured zirconia surface compared to osseointegration into titanium (Ti) surfaces. Scanning electron microscopy, confocal laser scanning microscopy, and electron spectroscopy for chemical analysis were performed to assess the surface characteristics of implant specimens. For the in vivo evaluation, eight Ti implants and eight 3D-printed zirconia implants were used. The surface of four Ti implants was sandblasted, large-grit, and acid-etched (Ti-SLA group), while those of the other four Ti implants were left untreated (Ti-turned group). The zirconia implants had no further surface modification. Implants were placed into the tibiae of four rabbits; two received the Ti-SLA and zirconia implants and the other two received Ti-turned and zirconia implants. The experimental animals were sacrificed after four weeks of surgery, and the undecalcified microscopic slides were prepared. The bone–implant interface was analyzed by histomorphometry to evaluate the bone response. The degree of surface roughness showed that Ti-SLA was the highest, followed by zirconia and Ti-turned surfaces. The 3D-printed zirconia surface showed similar bone-to-implant contact to the Ti-turned surface, and Ti-SLA had the most bone-to-implant contact. The additively manufactured zirconia implant surface is biocompatible with respect to osseointegration compared to the commercially pure Ti surface.  相似文献   

14.
The present experimental trial uses two types of dental implants, one made of titanium (Ti6Al4V) and the other one of zirconia (ZrO2), but both of identical design, to compare their stability and micro-movements values under load. One of each type of implant (n = 42) was placed into 21 cow ribs, recording the insertion torque and the resonance frequency using a specific transducer. Subsequently, a prosthetic crown made of PMMA was screwed onto each of the implants in the sample. They were then subjected to a static compression load on the vestibular cusp of the crown. The resulting micromovements were measured. The zirconia implants obtained a higher mean of both IT and RFA when compared with those of titanium, with statistically significant differences in both cases (p = 0.0483 and p = 0.0296). However, the micromovement values when load was applied were very similar for both types, with the differences between them (p = 0.3867) not found to be statistically significant. The results show that zirconia implants have higher implant stability values than titanium implants. However, the fact that there are no differences in micromobility values implies that caution should be exercised when applying clinical protocols for zirconia based on RFA, which only has evidence for titanium.  相似文献   

15.
Polylactide (PLA) is the most widely used biopolymer, but its poor ductility and scarce gas barrier properties limit its applications in the packaging field. In this work, for the first time, the properties of PLA solvent-cast films are improved by the addition of a second biopolymer, i.e., poly(decamethylene 2,5-furandicarboxylate) (PDeF), added in a weight fraction of 10 wt%, and a carbon-based nanofiller, i.e., reduced graphene oxide (rGO), added in concentrations of 0.25–2 phr. PLA and PDeF are immiscible, as evidenced by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, with PDeF spheroidal domains showing poor adhesion to PLA. The addition of 0.25 phr of rGO, which preferentially segregates in the PDeF domains, makes them smaller and considerably rougher and improves the interfacial interaction. Differential scanning calorimetry (DSC) confirms the immiscibility of the two polymer phases and highlights that rGO enhances the crystallinity of both polymer phases (especially of PDeF). Thermogravimetric analysis (TGA) highlights the positive impact of rGO and PDeF on the thermal degradation resistance of PLA. Quasi-static tensile tests evidence that adding 10 wt% of PDeF and a small fraction of rGO (0.25 phr) to PLA considerably enhances the strain at break, which raises from 5.3% of neat PLA to 10.0% by adding 10 wt% of PDeF, up to 75.8% by adding also 0.25 phr of rGO, thereby highlighting the compatibilizing role of rGO on this blend. On the other hand, a further increase in rGO concentration decreases the strain at break due to agglomeration but enhances the mechanical stiffness and strength up to an rGO concentration of 1 phr. Overall, these results highlight the positive and synergistic contribution of PDeF and rGO in enhancing the thermomechanical properties of PLA, and the resulting nanocomposites are promising for packaging applications.  相似文献   

16.
This study aimed to assess bioglass sintering to a zirconia core on surface properties and bonding strength to resin cement. Zirconia specimens were divided into four groups: G I: sintered; G II: bioglass modified zirconia (a bioglass slurry was sintered with zirconia at 1550 °C); G III: sandblasted using 50 μm Al2O3 particles; and G IV: Z-prime plus application. Surface morphology and chemical analysis were studied using a scanning electron microscope and energy-dispersive spectroscopy. Surface roughness was evaluated using a profilometer. Surface hardness was measured using an indentation tester. For the microshear bond strength test, resin cement cylinders were bonded to a zirconia surface. Half of the specimens were tested after 24 h; the other half were thermocycled (5–55 °C) for 1000 cycles. A shearing load was applied at a crosshead speed of 0.5 mm/min on a universal testing machine. Data were analyzed with ANOVA using SPSS software at (p < 0.05). Results: tThe mean surface roughness of G II was significantly higher than G I and G III. The microhardness of G II was significantly lower than all groups. For bond strength, there was no significant difference between groups II, III, and IV after thermocycling. Conclusions: Bioactive glass can increase the bond strength of zirconia to resin cement, and is comparable to sandblasting and Z-prime bonding agents.  相似文献   

17.
The interfacial polycondensation of titanium dioxide was studied at the bare and fiberglass membrane supported polarized liquid–liquid interface (LLI). Titanium dioxide synthesis was derived from the titanium (IV) tetrabutoxide (initially dissolved in the 1,2-dichloroethane) interfacial hydrolysis followed by its condensation. Experimental parameters, such as the pH of the aqueous phase and the influence of titanium alkoxide concentration in the organic phase on the electrochemical signal and material morphology, were investigated. The latter was achieved with fiberglass membranes used as the LLI support during TiO2 interfacial deposition. Cyclic voltammetry was used for the in situ studies, whereas scanning electron microscopy, energy-dispersive X-ray spectroscopy, and infrared spectroscopy were used during ex situ examination. The interfacial polycondensation reaction could be studied using electrified LLI and resulted in the material being a TiO2 film alone or film decorated with particles.  相似文献   

18.
During professional hygiene procedures, different instruments used may cause various damage to dental prostheses. Deplaquing and scaling with curettes and ultrasonic instruments may inadvertently increase the surface roughness of the material and the risk of future bacterial adhesion and/or also compromise the marginal seal of the prosthesis. Hence, the aim of this study was to assess the qualitative effects of two types of curettes and one piezoelectric instrument with a stainless-steel tip on three types of metal-free samples. After treating the samples with different instrumentations, they were analyzed using the scanning electron microscope and then underwent a qualitative microanalysis by using a spectroscopy machine. All the materials tested in this study have undergone significant changes of their superficial structure after instrumentation both with mechanical and manual instruments. Plastic curettes appeared to be less aggressive than the other instruments. Disilicate samples show a significantly lower degree of surface glazing erosion compared to the zirconia sample with all the instruments used.  相似文献   

19.
The present study investigated the effect of biochar (BC) addition on mechanical, thermal, and water resistance properties of PLA and hemp-PLA-based composites. BC was combined with variable concentration to PLA (5 wt%, 10 wt%, and 20 wt%) and hemp (30 wt%)-PLA (5 wt% and 10 wt%); then, composites were blended and injection molded. Samples were characterized by color measurements, tensile tests, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and water contact angle analysis. Experimental results showed that adding 5 wt% of BC enhanced the composite’s tensile modulus of elasticity and strength. Hence, the use of optimized loading of BC improved the mechanical strength of the composites. However, after BC addition, thermal stability slightly decreased compared with that of neat PLA due to the catalytic effect of BC particles. Moreover, the water-repelling ability decreased as BC content increased due to the specific hydrophilic characteristics of the BC used and its great porosity.  相似文献   

20.
A recently developed multi-ceramic additive manufacturing process (multi-CAMP) and an appropriate device offer a multi-material approach by vat photopolymerization (VPP) of multi-functionalized ceramic components. However, this process is limited to ceramic powders with a certain translucency for visible light. Electrically conductive ceramic powders are therefore ruled out because of their light-absorbing behavior and dark color. The goal of the collaborative work described in the article was to develop a material combination for this multi-material approach of the additive vat photopolymerization method which allows for combining electrical conductivity and electrical insulation plus high mechanical strength in co-sintered ceramic components. As conductive component titanium suboxides are chosen, whereas zirconia forms the mechanically stable and insulation part. Since titanium suboxides cannot be used for vat photopolymerization due to their light-absorbing behavior, titania is used instead. After additive manufacturing, the two-component parts are co-sintered in a reducing atmosphere to transform the titania into its suboxides and, thus, attaining the desired property combination. The article describes the challenges of the co-processing of both materials due to the complex optical properties of titania. Furthermore, the article shows successfully co-sintered testing parts of the material combination of zirconia/titanium suboxide which are made by assembling single-material VPP components in the green state and subsequent common thermal treatment. The results of microstructural and interface investigations such as electrical measurements are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号